How can we use AI on Big Data in the Transport Sector

Kim Guldstrand Larsen Aalborg University, DENMARK

Smart Society – Vision

Smart Buildings

Smart Water

Smart Energy

Smart Integration

Better living for citizens

Increased QoS and improved decision making for local governments Better utilization of resources

Growth potential for new businesses

Challenges for ICT

- Big Data
- Communication Internet-of-Things
- Al and Machine Learning

Smart Mobility

- Cyber-Physical Systems
- Safety & Security
- Privacy & Ethics.

Big Data

- Data is the new oil
 - Search Data (Web, Google, ..)
 - Social Network Data

(Twitter, Facebook, ..)

627 petabytes moved over internet daily .. 1PB =1 000 000 000 000 000 bytes

Big Data and Al in Transport

Ar do AG UNIVERSIT

- Data is the new oil
 - Search Data (Web, Google, ..)
 - Social Network Data (Twitter, Facebook, ..)
 - Big Sensor Data (IoT, ..)
 - GPS, Radar, Canbus, Cameras
- Traffic analysis (historical)
- Traffic monitoring (on-line)
- Traffic prediction (future)
- Traffic control (on-line)
- Traffic design (future)

Al Transport 2020

- What to estimate/monitor/predict (machine learning)
 - Road-signs
 - Obstacles
 - Delays
 - Congestion of traffic
 - CO2 emission
 - Traffic jams
 - Unexpected events
- What to control

(game theory)

- Car maneuvers
- Traffic Lights, Dynamic Road Signs
- Route suggestions
- What to design

(mechanism design)

- Effect of new road Infrastructure (physical, digital)
- Placing of loading stations for electrical vehicles

Traffic Congestion

Aim: Reduce CO² emissions and congestion

Existing New

Making it to the hospital in 5 min

- Data
 - Some 100 billion GPS records, 70.000+ vehicles
 - 350+ million CAN Bus records
 - Conventional and electric vehicles, mini-buses, buses, taxis, trucks
 - ~20 data sources, ~1 billion records per week
 - Maps
 - Weather data
- Software and hardware
 - A complete software stack for handling traffic data, data cleansing, multiple map support, maps-based analytics
 - Modern servers (up to 2TB main memory)

Intelligent Routing

Personalized Routing DK

- Ca. 2 billion distributions for the 1.6 million edges
- There are 2.4 million cars.
- Each car (driver) has two contexts.
- Result: 10 million billions = 10 quadrillion distributions
- For each routing query, compute weights using a different set of trajectories.
- Result: Weights cannot be precomputed.
- A new on-the-fly paradigm is needed.

stian S lenser

Traffic Accidents

Background, Questions, and Goals

- Background
 - Estimated that 50% of delay in traffic is due to "unplanned events"
 - Major issue for traffic planning, price goes up
- Questions
 - Can GPS data be used to **detect** the impact on traffic when there is an accident?
 - Can we quantify for **how long** an accident has an impact?
 - Can we determine the area in which an accident has an impact?
- Goals
 - Explain why late
 - Early warning for traffic planners

Traffic Accidents

Summary

- Can GPS data be used to detect the impact on traffic when there is an accident?
 - Yes, but need a very large set of vehicles
 - Works best on the major road network
- Can we quantify for how long an accident has an impact?
 - Yes, quite clearly on main roads, less on smaller roads
- Can we determine the area in which an accident has an impact?
 - Maybe, very hard to determine accurately!
- Working on
 - Real-time assessment
 - Spatial/temporal impact assessment in a more generic fashion
 - Key Performance Indicators (KPIs)
 - Opening up to the world

Motorway, Accident Wednesday

Intelligent Traffic Control

- Observation: Unnecessary waiting time
- Currently:
 - Time triggered
 - Induction loops
- Exploit new information from radars

Gren _____ Gul HIIIII Rød _____ Rød/Gu

S ITSTeknik

1903-040-210-4

Intelligent Traffic Control

- Light control = a game between traffic and control.
- Hard timing constraints (minimum green time)
- Explicit optimization criteria.
- Strategy calculated on-line using Machine Learning
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Deep Neural Networks

Al Transport 2020

Intelligent Traffic Control

- Light control = a game between traffic and control.
- Hard timing constraints (minimum green time)
- Explicit optimization criteria.
- Hobrovej
 - 2 km stretch
 - 6 signalized intersections
 - 20.000-30.000 vh/day
 - VISSEM (7.00-9.00)

Al Transport 2020

Intelligent Traffic Control

70

60

50

40

30

20

10

0

- Light control = a game between traffic and control.
- Hard timing constraints (minimum green time)
- **Explicit** optimization criteria.
- Hobrovej
 - 2 km stretch
 - 6 signalized intersections
 - 20.000-30.000 vh/day
 - VISSEM (7.00-9.00)

UPP 77

Autonomous Driving

Adaptive Cruise Control

Adaptive Cruise Control in UPPAAL

Objective: Control Acceleration of My Car so

- 1) Guaranteed No Crashes
- 2) As close as possible to **Opponents Car**

Safe Cruise

Optimal and Safe Cruise

Runs of Safe & Optimal Strategy

Average Distance

Strategy – Explicit

Strategy – Neural Network

Strategy – Decision Tree

Ego.Choose <= 0: 3 (1481817.0) Ego.Choose > 0 velocityEgo <= -10: 0 (39705.0/18380.0) velocityEqo > -10distance <= 200 velocityEgo <= 18 velocityEgo <= 12 distance <= 184 velocityEgo <= 0: 2 (331464.0/208577.0) velocityEgo > 0distance ≤ 122 distance <= 102: 2 (132918.0/80433.0) distance > 102 velocityEgo <= 2 velocityFront <= 12: 1 (6255.0/4155.0) velocityFront > 12 velocityFront <= 13: 2 (162.0) velocityFront > 13distance <= 110: 2 (870.0/363.0) distance > 110 velocityFront <= 15 velocityFront <= 14: 1 (207.0/99.0) velocityFront > 14: 2 (63.0) velocityFront > 15 distance <= 116 velocityFront <= 17: 2 (126.0/54.0) velocityFront > 17: 1 (129.0/39.0) distance > 116: 1 (108.0) velocityEgo > 2velocityEgo <= 4: 1 (7689.0/4929.0)

 $v_{elocity} E_{ao} > 4.2 (27426 0/17115 0)$

Learning Algorithms for Decision Tree (ID3, D4.5, CART) → 65 lines

(Jan Kretisnsky, Pranav Ashkot, TUM)

UPPAAL Adaptive Cruise Control

Safe and "Optimal" Strategy

ICAV Playing Games with Speed of Cars in Intersections

Smart Society – Vision

Smart Buildings

GENERIC SOLUTIONS

Smart Energy

Smart Integration

Better living for citizens

Increased QoS and improved decision making for local governments Better utilization of resources

Growth potential for new businesses

Challenges for ICT

- Big Data
- Communication Internet-of-Things
- Analysis & Optimization Machine Learning

Smart Mobility

- Cyber-Physical Systems
- Safety & Security
- Privacy & Ethics.