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Abstrakt 
With an increased focus on minimizing traffic externalities in metropolitan areas, a growing interest in 
environmentally friendly and shared mobility systems has emerged, such as electric car-sharing systems. 
However, increasing demand and larger area coverage often make it difficult to keep cars available where 
and when customers need them. This problem can be alleviated by predicting for how long cars stay vacant 
at given pick-up/drop-off locations. To maximize their usage, it can be more beneficial to relocate the cars 
at certain periods to more desired locations. In this paper, we tackle the problem of predicting time-to-
pickup for shared cars in a probabilistic way as a function of time by applying time-to-event modelling 
through survival analysis. Both statistical and deep neural network approaches to survival regression were 
investigated. The Cox proportional hazards model (CPH) is compared to the deep neural network model 
DeepSurv. To predict survival times, a two-step approach was formulated, where in the upper level a 
classification is used to classify cars into two groups based on idle time duration, whereas in the lower level 
for each given group time-to-event modelling is applied. DeepSurv method demonstrated a stronger fit 
compared to CPH. The two-step approach resulted in over 15% improvement in performance, comparing to 
the one-step approach, where no classification is used. 

Introduction 
Shared mobility and car-sharing services have become increasingly popular over the last 10 years. Shared 
mobility is a rapidly increasing form of transportation worldwide, in order to reduce traffic congestion and 
provide more climate-friendly modes of transportation. However, with increasing demand, companies 
providing these types of transportation are facing challenges, such as keeping the vehicles accessible to 
customers at their desired locations. This issue is amplified when the system operates in a free-flowing 
regime, i.e. when customers are free to drop off cars at any place in a limited area where is most 
convenient for them. One solution to tackle this issue is to relocate cars manually to more desired 
locations, especially in the busy areas. Being able to predict which cars will be vacant the longest, will 
decrease vacancy time, thus increasing revenue and user satisfaction. 

The main goal of this paper is to explore methods for predicting shared cars’ vacancy time. The 
methodology used is general and can be applied to any type of shared mobility system, such as bike-
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sharing. The core concept of the analysis is to model the idle time as survival time. The time interval a car is 
vacant will be modeled as how long it survives. Therefore, one objective of this research is to investigate 
how well survival analysis can be applied in this context, and to provide comparison between several 
survival models. 

Background 
There are various types of shared mobility concepts, such as car-sharing (station-based and free-flowing), 
bike-sharing or on-demand services. For a broad overview of shared mobility, we recommend Machado et 
al. 2018 [1]. These shared mobility systems have attracted attention of the research community, having 
increasingly more research being done in the recent years. An increasing presents of companies entering 
the market, due to promising business opportunities, mainly drives this trend. For example, the market for 
car-sharing has been examined, in terms how likely is that individuals will join the car-sharing system in 
Switzerland, to identify new market opportunities, done by Juschten et al. 2019 [2]. Another reason is the 
need for sustainable transport system and cities in general. Different stakeholders may have different 
objectives: operators want to maximize their profit, authorities want to provide regulation, transport 
researchers to evaluate its impact and contribute in directing future developments. The shared mobility 
systems have been analysed from both a simulation and data-driven perspective, as more data are being 
available from private fleet operator companies. 

Methods 
As mentioned before, we want to model idle time of cars using survival analysis. Survival analysis [3] 
provides time-to-event (TTE) analysis with censored observations. TTE is expressed through two events: the 
birth event (which is our case is the drop-off) and the death event (which is the subsequent pick-up), hence 
the term “survival”. Time between the two events is survival time, denoted by T, which is treated as a non-
negative random variable. Given the birth event, it represents the probability distribution of the death 
event happening in time. In addition, observations of true survival times may not always be available, thus 
creating distinction between uncensored (true survival times available) and censored observations (true 
survival times unknown, but only the censorship time). This information is expressed through an event 
indicator E, with binary outcome. The censorship time is assumed to be non-informative, and T and E are 
independent. The survival function S(t) can be defined from the cumulative distribution function F(t), as S(t) 
= 1 - F(t), which in terms of probabilities can be formulated as S(t) = P(T > t). The survival function can be 
interpreted in terms of the gradient (slope) of a line, with steeper line segments meaning an event is more 
likely to happen in the corresponding interval. 

Most commonly used statistical methods for survival analysis is the Kaplan-Meier method [4], which is 
univariate counting-based method for general insights. To estimate the effect of features, the Cox 
proportional hazards model (CPH) introduced by Cox 1972 [5] is used, which is a survival regression model. 
It provides interpretability but lacks accuracy with larger datasets. To improve on accuracy recently deep 
neural network have been used, thus creating deep survival models. One of them is DeepSurv, by Katzman 
et al. 2018 [6], which extends CPH to account for non-linear relationships among features. 

The concordance index (C-index) will be the main measure of quality and performance. The C-index can be 
seen as an equivalent to the R2 score in regression. The C-index measures the correctness of the ordering of 
predicted survival times against the truly observed times. A value of 1 represents a perfect score, random 
guessing corresponds to 0.5. In general, one can expect to achieve a value between 0.6 and 0.7 for an 
average fit, above 0.7 is generally considered a strong fit. 

Data 
Data used for this research were kindly provided by DriveNow Copenhagen, a car-sharing company. The 
data comes from a fleet of electric cars operating as a free-floating car-sharing system. The dataset consists 
of several hundred thousand observations. Each observation is one realized trip. A trip is described by a set 
of features, such as vehicle ID and pick-up and drop-off data (location, time and battery level). The dataset 
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includes hundreds of cars in the period of around a year, collected in 2017 and 2018. The allowed area for 
car locations covers most of the city, and is divided into zones of various granularity. The zone can be 
inferred from the location coordinates. The zone ID will be given attention later in the training process, as it 
will turn out to be a decent predictor variable, both individually as well as jointly with other features. 

As an objective with shared mobility systems is to maximize fleet usage, vehicles can be relocated from 
their current drop-off locations to more attractive locations if their estimated vacant time is on the current 
location is high. This can be easily detected from the data, as pick-up location of one trip is different from 
the drop-off location of the previous trip the car had. Since from the data it is unknown at what time the 
car has been relocated, it is assumed that the car is picked up immediately after being moved. These 
observations will be treated as censored, as it is unknown how long the cars survived. We know that the car 
was parked in a specific zone and was vacant until the point it was relocated. It is, however, unknown for 
how long it would have stayed parked in the zone, had it not been relocated. 

Exploratory analysis and general insights 
We investigate here the significance individual features have on survival times. Their average effect is 
typically estimated using the Kaplan-Meier (KM) model, which is used to compute average survival 
functions for each features values, which then allows for easy comparison. The survival times used in these 
analyses include values of less than or equal to 50 hours, which comprise more than 99% of the data, hence 
all the survival functions converge almost to zero. 

Fig. 1 shows the results of investigating the effect the battery level and distance to the city centre have on 
the survival function. We can see that if the battery is charged more than 50% when the car was dropped 
off, it has a higher probability of being picked up comparing to the cars with lower battery levels, as the 
blue line decreases faster than the orange line. Similar effect can be observed in the other case, where cars 
closer to the city centre (<= 5 km) will be picked up faster than the other cars. 

Figure 1. The effect of the battery level and distance to the city centre on survival times 

Results 
Here we test and compare the regression models, CPH and DeepSurv, in predicting survival times. The 
results of the survival time predictions are shown in Fig. 2. Two approaches were investigated: the one-step 
approach applies survival analysis on the whole dataset, whereas the two-step approach first conducts the 
classification of survival times based on the certain threshold and then applies survival analysis on the two 
classified groups of data samples. The one-step approach results start with “1” in the legend and are 
depicted using dashed lines, and the two-step approach starts with “2” and is depicted using solid lines. For 
both of them, three variants are investigated: “Cox baseline” (in red) is the CPH model using only Zone ID 
variable as a single feature for prediction, “Cox” (in blue) is the CPH model using all the features and 
“DeepSurv” (in black) is a deep neural network model using all the features. The two-step approach 
contains classification error, therefore we also evaluate the survival predictions on the true split (i.e. 
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perfect classification), where we manually split survival times of the cars on the specific threshold and then 
run survival analysis on those splits (these are denoted with “TRUE FIT”). In this way, we can see the effect 
of the classification error on the final prediction accuracy. We tested various split thresholds (treated in 
hours), shown on the x-axis, whereas on the y-axis is the C-index, which is our accuracy measure. We can 
see that for shorter thresholds we can obtain much higher accuracy with the two-step model, and as the 
threshold increases, i.e. more data belong to one class, the two-step approach converges to the one-step 
approach. For the split at 1 hour, i.e. where we classify the idle times of cars to be less then or greater than 
1 hour, and then run DeepSurv, we can get the most accurate prediction of the survival times of the cars. 

Figure 2. The comparison of the one-step approach and two-step approach performance 

Conclusion 
We successfully applied survival analysis, and especially deep survival analysis, in the context of shared 
mobility systems. We proved that these methods could be very informative and provide predictions that 
can be used for optimizing shared vehicle fleets. In addition, applying the two-step approach improved the 
performance of all the three different models. DeepSurv was overall a stronger predictor than CPH. In 
general, the two-step approach is more demanding to fit, as it requires more hyper-parameter tuning. Next 
steps would be to investigate joint prediction for neighboring vehicles, to account for the effect that when 
one vehicle is picked up, it then affects the probability of its neighboring vehicles being picked up. 
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