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Abstract  

We analyse the determinants of trucking firm fuel use. We develop a simple model to show that 
trucking firm fuel use depends, in addition to the fuel price and the traffic volume, also on the 
output of the trucking firm’s production process (the movement of cargo) measured in ton-
kilometres, characteristics of the truck stock, and congestion. We also analyse the rebound effect 
for road freight transportation, i.e. the percentage of increased energy efficiency that does not 
result in the reduction of fuel used. For the purpose of analysing the rebound effect for road 
freight transportation, we decompose the standard definition of the rebound effect for motor 
vehicles, i.e. the elasticity of traffic volume with respect to fuel cost, into the elasticity by which 
changes in fuel costs affects freight activity and the elasticity by which changes in freight 
activity affect traffic volume. We estimate these elasticities using a simultaneous-equation model 
based on aggregate time-series data for Denmark for 1980-2007. Our best estimates of the short 
run and the long run rebound effects for road freight transportation are 19% and 28%, 
respectively. We also find that an increase in the fuel price surprisingly has a small but 
significant negative effect on the fuel efficiency (measured here as vehicle kilometres travelled 
(VKT) per litre of consumed fuel), i.e. a 1% increase in the fuel price decreases the fuel 
efficiency by 0.13% in the long run. However, less distance has to be driven for the same 
payload. An 1% increase in the fuel price decreases the VKT by 0.19% in the short run and 
0.28% in the long run. Finally, a 1% increase in the fuel price results in a 0.19% reduction in the 
trucking firms’ overall fuel use. 
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1. Introduction 

This paper examines the determinants of the road freight transportation fuel use. In 2004, the 

transportation sector was responsible for more than a quarter of the total world energy use, and 

roughly a third of this energy use was dedicated to road freight transportation (IEA, 2006; 

WBCSD, 2004). The analysis of the determinants of the road freight transportation fuel use is 

relevant because the road freight transportation’s energy use is expected to grow in both the EU 

and the US (IEA, 2010; Léonardi and Baumgartner, 2004). 

In Denmark, freight transportation accounts for a rising share of the total energy use as 

well. The road freight transportation activity (measured in ton-kilometres) increased by 59% 

from 1980 to 2007. Energy use of the road freight transportation increased by 105% in the same 

period. The main reason for the evident energy efficiency decline is presumably the ‘just-in-

time’ behaviour of trucking firms, which resulted in lower utilization of the vehicles’ capacity 

(Sathaye et al., 2010).1

Large reductions in road freight transportation energy use can be achieved by structural 

changes in the trucking industry towards improved matching of truck capacity to load (Kamakaté 

and Schipper, 2008). However, an often observed effect of policies directed at higher utilization 

of the vehicles’ capacity is that better-utilized trucks are regularly heavier and use more fuel per 

kilometre, but, in theory, less distance has to be driven for the same payload (Léonardi and 

Baumgartner, 2004; Sathaye et al., 2010).

 

2

As with all changes that improve energy efficiency, there may be some rebound effect 

that to some extent offsets the original energy saving.

 In Denmark, improvements in fuel efficiency of 

individual trucks were offset by growth in production and the overall change in the structure of 

the truck-stock (Kveiborg and Fosgerau, 2007). 

3

                                                      
1 Just-in-time is an inventory strategy that strives to improve a business’s return on investment by reducing in-
process inventory and associated carrying costs (see e.g. Bonney, 1994). 

 As the energy efficiency of road freight 

transportation improves, freight road transportation becomes cheaper, thereby providing an 

incentive to increase its use. Thus total fuel use responds less than proportionally to changes in 

2 The reduction of freight truck trips with the general purpose to reduce congestion and environmental impacts has 
been a common policy goal for many governments around the world in recent years (Sathaye et al., 2010). For 
example, freight centres for facilitating cargo transfer have been constructed in several European countries implying 
significant savings for trucking firms using these centres through reduced fuel consumption (McKinnon, 2003). 
3 The rebound effect has been studied in different contexts (for survey see Greening, et al., 2000), including 
transportation (see e.g. Small and van Dender, 2007; Hymel, et al., 2010). 
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fuel efficiency. The rebound effect is typically quantified as the extent of the deviation from this 

proportionality. 

Substitution between freight modes also has a large impact on freight transportation 

energy use, mostly because the energy intensity (measured in energy use per ton-kilometre) of 

trucks, ships and trains is considerably different (Forkenbrock, 1999). This paper focuses solely 

on road freight transportation because substitution between freight modes in Denmark is 

relatively limited and more than three quarters of all goods in Denmark are transported by trucks. 

According to Rich et al. (2010) a large proportion of the road freight transport services between 

OD pairs in Denmark cannot be substituted since there is only one option available, i.e. trucks. 

Moreover, Bjørner and Jensen (1997) calculated a cross-price elasticity of about 0.2 between 

road freight transportation versus train and ships (for a given transport demand).4

Considering the debate about the road freight transportation fuel use, the absence of 

empirical estimates about it may be surprising. We aim to fill this gap in the literature. The aim 

of the current paper is to analyse the determinants of the trucking firm fuel use. We estimate a 

simultaneous-equation model based on aggregate time-series data for Denmark for 1980-2007. 

Our study deals with a range of the statistical difficulties by accounting for the endogeneity of 

fuel efficiency, and by distinguishing between autocorrelation and lagged effects. The paper adds 

to the transportation literature, contributing with two main improvements. First, we explicitly 

analyze the determinants of the fuel use in road freight transportation. To our knowledge, such 

an analysis has not been undertaken before. Matos and Silva (2011) analysed the effect of 

increasing energy efficiency based on the estimation of a direct rebound effect for road freight 

transportation in Portugal for the period between 1987 and 2006 using aggregate time series data. 

They estimated the demand for road freight transportation focusing on the effect of a change in 

energy cost of transportation on a change in demand for road freight transportation taking into 

account detected endogeneity of the price variable. Parry (2008) presented an analytical 

framework for estimating optimal taxes on the fuel use and mileage of heavy duty trucks in the 

United States that indirectly includes measures of the rebound effect. Bjørner (1999) carried out 

 In general, the 

share of road freight transportation compared to other modes is large in small countries 

(Kamakaté and Schipper, 2008). 

                                                      
4 Surveys of the studies on price elasticities for freight transportation are given by Oum, Waters and Yong (1992) 
and Zlatoper and Austrian (1989). 
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an empirical analysis of the environmental benefits from better road freight transportation 

management in a Danish context, in a VAR model based on aggregate time series. Second, we 

show that the rebound effect for the road freight transportation can be decomposed from the 

standard definition of the rebound effect for motor vehicles, i.e. the elasticity of traffic volume 

with respect to fuel cost, into the elasticity of freight activity with respect to fuel cost per 

kilometre and the elasticity of traffic volume with respect to freight activity. The next section 

introduces the analytical model; Section 3 provides the empirical specification of the model; 

Section 4 presents the empirical results; and Section 5 concludes. 

 

2. Trucking firm behaviour 

We consider a small open economy where a representative competitive trucking firm ships goods 

at a given price denoted by 𝑃�𝑌. Mode choice is not considered, thus there is only one means of 

transportation (road freight transportation). The output of the production process in trucking is 

the movement of cargo, or freight activity (Hubbard, 2003). A fundamental difficulty associated 

with studying trucking firm behaviour is finding an appropriate measure of output. Since 

trucking activity can be characterized by point of origin and destination, commodity type, and 

shipment size, the ideal measure of output would include all of these dimensions. In this study, 

freight activity is measured in ton-kilometres (𝑡𝑘𝑚), which is the product of the mass of freight 

(measured in tonnes) and the distance it is carried (measured in kilometres).  

Certain fundamental relationships exist between average load, aggregate ton-kilometres, 

vehicle kilometres travelled (VKT), and tons (Smith, 1957). The technical relation relating to 

freight activity (𝑌), traffic volume (𝑉), and the average load (𝑊) per shipment can be 

approximated as 𝑉 = 𝑌/𝑊.5

                                                      
5 Exact definition of the relationship between Y, 𝑉 and W includes an adjustment factor to take into account the 
effect of the nonlinear statistical relationship between length of haul and size of load (see Smith, 1957). Due to data 
unavailability, we use the approximation of this relationship in an unadjusted form. 

 The capacity utilization depends largely on how well trucking firms 

can identify and agglomerate complementary demands onto individual trucks (Hubbard, 2003; 

Baker and Hubbard, 2003). We assume that the trucking firm can to some extent reduce traffic 

volume for a given freight activity through investments in logistics. These reductions will mainly 

be the result of better matching of the trucks capacity to shipment, i.e. change in the average 

load.  
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The firm employs labour (𝐿), purchases fuel, and purchases and uses trucks to produce 

freight service. The total number of trucks (𝑀) and the average truck’s attributes affect the firm’s 

costs. The average truck attributes 𝑆 and 𝐻 could be anything that affects the trucking firm’s 

decision making process, i.e. the trucking firm’s total revenue and total costs. For concreteness, 

we define 𝑆 as the average truck capacity (measured here as axle weight). The firm’s decision 

making process is also affected by the truck vintage since newer trucks depreciate more than 

older trucks and the truck vintage is presumably correlated with truck technology (for example 

fuel injection), so we define 𝐻 as the average truck age.6

𝐹 = 𝑉
𝐸(𝑆,𝐻,𝐷)

 ,                                                                                                       (2.1)  

 Moreover, the firm’s choice set 

includes also consideration of use of fuel, and consequently traffic volume, in producing freight 

service. Fuel consumption (𝐹) and traffic volume (𝑉) are related through the identity: 

where 𝐸 = 𝐸(𝑆,𝐻,𝐷) is the fuel efficiency measured in 𝑉𝐾𝑇 per litre of consumed fuel. Fuel 

efficiency is a function of the average truck capacity (𝑆), the average truck age (𝐻), and the level 

of congestion (𝐷), where trucks with larger capacity are assumed to have higher fuel 

consumption and where newer trucks through improved technology increase fuel efficiency, i.e.  

𝐸𝑆 ≤  0, 𝐸𝐻 ≤  0 where subscripts stand for partial derivates. Increasing congestion is assumed 

to reduce fuel efficiency, i.e. 𝐸𝐷 ≤  0. 

 

2.1 Trucking firm profit maximization problem (PMP) 

We consider a competitive market consisting of identical trucking firms producing a 

homogeneous service. When determining its optimal policy, the trucking firm faces the market 

constraint existing in any competitive market, i.e. the prices are assumed to be independent of the 

production plans of the firm (for discussion see Mas-Colell et al., 1995, chapter 10).7

The representative trucking firm attempts to maximize its profit (Π); that is the trucking 

firm chooses actions so as to maximize the total revenue minus total costs. It faces at least three 

types of the production costs: fuel costs, wages, and capital costs (Schipper and Price, 1997). 

Moreover, external factors (such as time of vehicle use, weather conditions, and traffic 

congestion) have proven to be relevant for the road freight transportation fuel efficiency, and 

consequently for the firm’s costs (Samuelsson and Tilanus, 2002; Calthrop and Proost, 2003). 

 

                                                      
6 For detailed discussion on vehicle vintage and fuel efficiency see Fullerton and West (2001). 
7 In a perfect competitive industry entry and exit costs are zero and firms are endowed with perfect foresight. 
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However, it is only the choice of the vehicle type and the implementation of the IT scheduling 

systems that can be influenced by the managers of trucking firms (Léonardi and Baumgartner, 

2004).  

The representative trucking firm is concerned only with determining the profit-

maximizing levels of freight activity (𝑌) and inputs in production. The profit maximization 

problem (PMP) facing the firm can be written as simply a choice over its input levels (𝐿, 𝑀, 𝑆, 

𝐻, and 𝑉) for a given price vector and given D�: 

max𝐿,𝑀,𝑆,𝐻,𝑉≥0 Π = P�Y𝑓(𝐿,𝑀, 𝑆,𝐻,𝑉 ) − �𝑤𝐿 + 𝑃𝐹

𝐸(𝑆,𝐻,𝐷�)𝑉 + 𝑔(𝑆,𝐻,𝑀;𝜶)� ,             (2.2) 

where 𝑓(∙) is a quasi-concave differentiable production function with substitution possibilities 

between production inputs and 𝑔(∙) is a differentiable cost function of 𝑆, 𝑀 and 𝐻, where 𝜶 is 

the corresponding price vector. The vehicle capital costs (𝑔) are equal to the costs of maintaining 

a truck fleet, i.e. costs related to 𝑆, 𝑀 and 𝐻.8 The price of labour and the price per litre of fuel 

are 𝑤 and 𝑃𝐹, respectively.9 The fuel price is divided by 𝐸 to get a figure for fuel costs per 

kilometre (𝑃𝑉). The functions that give the optimal choices of inputs and output as a function of 

the prices are known as the factor demand functions 𝑍∗ = 𝑍(𝐷�,𝑌� ,𝑤,𝑃𝐹 ,𝜶), 𝑍 = 𝐿,𝑀, 𝑆,𝐻,𝑉 

and output supply function, correspondingly.10

P�Y − 𝜕𝐶(𝑌,D� ,w,PF,𝜶)
𝜕𝑌

≤ 0 ,                                                                                                 (2.3) 

 The necessary first-order condition for 𝑌∗ to be 

profit maximizing is:  

with equality if 𝑌∗ > 0, where 𝐶(∙) is the cost function. Thus, at an interior optimum (i.e., if 

𝑌∗ > 0), price equals marginal costs. This result will be useful in the analysis of the trucking 

firm fuel use.11

 

 

                                                      
8 We can specify the vehicle capital costs function as 𝑔 =  (𝑃𝑀  +  𝑃𝑆𝑆 +  𝑃𝐻𝐻)𝑀, where 𝑃𝑀 is average truck 
capital/maintenance costs, 𝑃𝑆 is the price for adding one additional unit of capacity to average truck capacity (𝑆), 
and 𝑃𝐻  is the price for adding one additional unit of age (e.g. year) to average truck age (𝐻). We consider for 
simplicity of notation only the more general form of the vehicle capital costs function, i.e. 𝑔(∙). 
9 A study of Denmark showed that fuel choice is almost exclusively diesel for trucks due to the very low diesel fuel 
cost (Lee Schipper and Price, 1997). 
10 It is easy to show that the first-order conditions for S, H and V, and the economic rate of substitutions between 
inputs are adjusted for the changes in the fuel efficiency, indicating the likely existence of the rebound effect. 
 11 Analysis of the effects of changes of exogenous variables on the choice set variable (for example the effect of 
change of 𝑃𝐹  on 𝐿, 𝑆, 𝐻, 𝑀, and 𝑉) requires determination of the signs of the bordered Hessian matrix of the 
Lagrangian principal minors. Determination of the signs of these principal minors, and consequently the analysis of 
the effects of changes of exogenous variables on the choice set variables, is not considered in this study because of 
the dimensionality of the bordered Hessian. 
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2.2 Trucking firm fuel use 

When changes in the fuel efficiency are assumed to be exogenous, it is easy to show that fuel use 

responds to exogenous changes in 𝐸 according to the elasticity equation (see Appendix A): 

𝜀𝐹,𝐸 = −1 − 𝜀𝑉,𝑌𝜀𝑌,𝑃𝑉  ,                                                                                                 (2.4) 

where 𝑃𝑉 is the per-kilometre fuel cost, εF,E is elasticity of 𝐹 with respect to 𝐸, 𝜀𝑉,𝑌 is elasticity 

of 𝑉 with respect to 𝑌, and 𝜀𝑌,𝑃𝑉 is elasticity of 𝑌 with respect to 𝑃𝑉. Consequently a non-zero 

value of 𝜀𝑉,𝑌𝜀𝑌,𝑃𝑉 implies that change in 𝐹 is not proportional to change in 𝐸. Thus, 𝜀𝑉,𝑌𝜀𝑌,𝑃𝑉 is 

taken as the measure of the rebound effect for road freight transportation. The rebound effect 

arises because traffic volume depends (among other things) on the freight activity, and the 

freight activity depends (among other things) on the variable cost per kilometre driven, a part of 

which is the per-kilometre fuel cost. Therefore, improved fuel efficiency reduces fuel cost per 

kilometre and consequently increases 𝑌 and 𝑉. The rebound effect refers to this response in 𝑌 

and 𝑉 which tends to reduce the beneficial effects of the improved fuel efficiency. 

We analyse trucking firm fuel use by accounting for the endogeneity of fuel efficiency. 

We define fuel efficiency as a function of the average truck attributes and congestion. 

Consequently, the change in fuel efficiency will be the result of changes in the average truck 

capacity and the average truck age which again are determined by the level of freight activity, 

congestion, wages, capital costs, and fuel price. We will in this study focus on the effect of 

changes in fuel price on the trucking firms’ total fuel use. A simple calculation using the 

definition of elasticity and the solution to PMP shows that (see Appendix A): 

𝜀𝐹,𝑃𝐹 = 𝜀𝑉,𝑃𝐹 + 𝜀𝑉,𝑌𝜀𝑌,𝑃𝑉�1 − 𝜀𝐸,𝑃𝐹� − �𝜀𝐸,𝑃𝐹 + 𝜀𝐸,𝑃𝑉� ,                                (2.5) 

where 𝜀𝐸,𝑃𝐹 = 𝜀𝐸,𝑆𝜀𝑆,𝑃𝐹 + 𝜀𝐸,𝐻𝜀𝐻,𝑃𝐹 and 𝜀𝐸,𝑃𝑉 = 𝜀𝑌,𝑃𝑉�𝜀𝐸,𝑆𝜀𝑆,𝑌 + 𝜀𝐸,𝐻𝜀𝐻,𝑌�. 𝜀𝐸,𝑃𝐹 measures the 

effect of fuel price on fuel efficiency and 𝜀𝐸,𝑃𝑉 measures the effect of fuel cost per kilometre on 

fuel efficiency. The potential difference between 𝜀𝐹,𝑃𝐹 and 𝜀𝑉,𝑃𝐹 therefore requires that the last 

two terms in (2.5) be considerably different from zero. Disregarding this dependence of 𝐸 on 𝑃𝐹 

may cause biased estimates of the effect of the change in the fuel price on the trucking firm fuel 

use and in particular biased estimates of the rebound effect. 
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3. Empirical analyses 

3.1. System of simultaneous equations 

The empirical specification is based on trucking firm PMP that simultaneously determines traffic 

volume (𝑉), number of trucks (𝑀), average truck capacity (𝑆), average truck age (𝐻), labour 

demand (𝐿), and freight activity (𝑌). The factor demand functions are determined by the level of 

output and the factor input prices (see section 2.1). Thus, the trucking firm chooses traffic 

volume, size of the truck stock, average truck attributes, and demand labour based on freight 

activity, fuel price, input prices for capital (capital/maintenance costs) and labour (wages), and 

the level of congestion. The freight activity is determined (among other things) by the output 

price. Since we do not observe the output price we specify the freight activity equation based on 

the PMP first-order condition (see (2.3)), i.e. at the optimum output price equals marginal costs. 

Therefore, the freight activity is assumed to be the function of the level of congestion and the 

factor input prices, i.e. the fuel cost per kilometre (𝑃𝑉 = 𝑃𝐹 𝐸⁄ ), the input prices for capital 

(capital/maintenance costs), and wages.12 The empirical specification of the freight activity also 

includes GDP that is used here as proxy for general economic development. We also include fuel 

efficiency (𝐸) in the estimation with the purpose of explicitly analyzing the determinants of the 

fuel efficiency. The fuel efficiency is determined by accounting for the average truck attributes 

and the level of congestion. Moreover, the empirical specification of the fuel efficiency includes 

time trend to proxy for unmeasured changes (technology).13

 

 These assumptions lead to the 

following structural model: 

 

 

                                                      
12 Notice here, 𝜕𝐶

𝜕𝑌
= 𝑤 𝜕𝐿∗

𝜕𝑌
+ 𝑃𝐹

𝐸
𝜕𝑉∗

𝜕𝑌
− 𝑉∗ 𝑃

𝐹

𝐸2
� 𝜕𝐸
𝜕𝑆∗

𝜕𝑆∗∗

𝜕𝑃𝐹
+ 𝜕𝐸

𝜕𝐻∗
𝜕𝐻∗

𝜕𝑃𝐹
� + �𝜕𝑔

𝜕𝑆∗
𝜕𝑆∗

𝜕𝑌
+ 𝜕𝑔

𝜕𝐻∗
𝜕𝐻∗

𝜕𝑌
+ 𝜕𝑔

𝜕𝑀∗
𝜕𝑀∗

𝜕𝑌
� where 𝐶 = 𝑤𝐿∗ +

𝑃𝐹

𝐸(𝑆∗,𝐻∗,𝐷�)
𝑉∗ + 𝑔(𝑆∗,𝐻∗,𝑀∗;𝛼) is the cost function, and 𝑍∗ = 𝑍(𝐷�,𝑌� ,𝑤,𝑃𝐹 ,𝜶), 𝑍 = 𝐿,𝑀, 𝑆,𝐻,𝑉 are the 

conditional factor demand functions. 
13 We have also experimented with a producer provided indicator for the expected average fuel use per kilometre for 
a 40-tonne truck as proxy for the average truck technology. European Automobile Manufacturers’ Association 
reports that average fuel consumption for a 40-tonne truck decreased from 50 litres per 100 km in 1967 to 32 litres 
per 100 km in 2004 (see ACEA, 2007). Improved fuel efficiency is the result of improvements in engine 
technologies (e.g. fuel injection), Selective Catalytic Reduction (SCR), telematics technologies (e.g. satellite 
navigation systems), tires, aerodynamics, etc., i.e. improved technology. So, the producer provided average expected 
fuel use per kilometre for a new 40-tonne truck has been used as proxy for the average truck technology. Moreover, 
this indicator has been divided by the average truck age with the purpose of accounting for speed of implementation 
of new truck technology in the existing truck stock. This experiment was not successful.  
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𝐸 = 𝐸(𝑆,𝐻,𝐷� ,𝑋𝐸)  

𝐿 = 𝐿(𝑌,𝑃𝐹 ,𝐷�,𝑤,𝜶,𝑋𝐿)  

𝑆 = 𝑆(𝑌,𝑃𝐹 ,𝐷�,𝑤,𝜶,𝑋𝑆)  

𝐻 = 𝐻(𝑌,𝑃𝐹 ,𝐷�,𝑤,𝜶,𝑋𝐻)                                                                                             (3.1) 

𝑀 = 𝑀(𝑌,𝑃𝐹 ,𝐷�,𝑤,𝜶,𝑋𝑀)                                                                                                  

𝑉 = 𝑉(𝑌,𝑃𝐹 ,𝐷�,𝑤,𝜶,𝑋𝑉)  

𝑌 = 𝑌(𝑃𝐹 𝐸⁄ ,𝐷�,𝑤,𝜶,𝑋𝑌) , 

where 𝑋𝐸, 𝑋𝐿, 𝑋𝑆, 𝑋𝐻, 𝑋𝑀, 𝑋𝑉, and 𝑋𝑌 are additional exogenous variables including constants. 

 We analyse the trucking firm fuel use based on the system in (3.1). Following Small and 

van Dender (2007) we generalize estimation in two ways to handle dynamics. First, we allow the 

error terms to be autoregressive of order 1. It means that unobserved factors influencing 

decisions in a given state will be similar from one year to the next. This could be caused by 

unobserved factors that persist over time, such as for instance business organizational styles. 

Second, we include the one-year lagged value of the dependent variable among the explanatory 

variables. The coefficient of this variable determines the difference between short run and long 

run effects on the independent variables. The inertia of such movement can arise due to lack of 

knowledge or slow turnover of the truck stock, or simply because trucking firms respond only 

slowly to changed circumstances. Consistent estimates of variables in a time series data may 

depend on autoregression and autocorrelation. Both autoregression and autocorrelation are 

important in determining the short run and long run effects, because the measurements of the 

lagged values of the dependent variables are sensitive to whether or not autocorrelation is 

controlled for. However, it is difficult to separate the presence of a lagged dependent variable 

from the presence of autocorrelation, especially when aggregate time-series data are used. In the 

current paper, we discuss the results of a specification incorporating both autoregression and 

autocorrelation.14

We specify the equations as linear in parameters and with most variables in logarithms, 

leading to the following system: 

 We will explicitly address the potential bias of this specification by comparing 

results of this specification with results of a specification incorporating only autoregression. 

 

 
                                                      
14 Survey of the empirical studies on rebound effect for motor vehicles is given by Small and van Dender (2005). 
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𝑒𝑡 = 𝛼𝑒𝑒𝑡−1 + 𝛼𝑒𝑠𝑠𝑡 + 𝛼𝑒ℎℎ𝑡 + 𝛽𝑒𝑋𝑡𝑒 + 𝑢𝑡𝑒  

𝑙𝑡 = 𝛼𝑙𝑙𝑡−1 + 𝛼𝑙𝑦𝑦𝑡 + 𝛽1𝑙𝑝𝑡
𝑓 + 𝛽2𝑙𝑋𝑡𝑙 + 𝑢𝑡𝑙  

𝑠𝑡 = 𝛼𝑠𝑠𝑡−1 + 𝛼𝑠𝑦𝑦𝑡 + 𝛽1𝑠𝑝𝑡
𝑓 + 𝛽2𝑠𝑋𝑡𝑠 + 𝑢𝑡𝑠  

ℎ𝑡 = 𝛼ℎℎ𝑡−1 + 𝛼ℎ𝑦𝑦𝑡 + 𝛽1ℎ𝑝𝑡
𝑓 + 𝛽2ℎ𝑋𝑡ℎ + 𝑢𝑡ℎ                                                               (3.2) 

𝑚𝑡 = 𝛼𝑚𝑚𝑡−1 + 𝛼𝑚𝑦𝑦𝑡 + 𝛽1𝑚𝑝𝑡
𝑓 + 𝛽2𝑚𝑋𝑡𝑚 + 𝑢𝑡𝑚  

𝑣𝑡 = 𝛼𝑣𝑣𝑡−1 + 𝛼𝑣𝑦𝑦𝑡 + 𝛽1𝑣𝑝𝑡
𝑓 + 𝛽2𝑣𝑋𝑡𝑣 + 𝑢𝑡𝑣  

𝑦𝑡 = 𝛼𝑦𝑦𝑡−1 + 𝛼𝑦𝑒𝑒𝑡 + 𝛽1
𝑦𝑝𝑡

𝑓 + 𝛽2
𝑦𝑋𝑡

𝑦 + 𝑢𝑡
𝑦  

with autoregressive errors: 

𝑢𝑡𝑖 = 𝜌𝑖𝑢𝑡−1𝑖 + 𝜀𝑡𝑖                             𝑖 = 𝑒, 𝑙, 𝑠,ℎ,𝑚, 𝑣,𝑦 ,                                                  (3.3) 

where lower case notation indicates that the variable is in logarithm.15

 

 The individual variables 

in each vector 𝑋 may be in either levels or logarithms. Subscript 𝑡 designates a year, and 𝑢 and 𝜀 

are error terms assumed to have zero expected value, with 𝜀 assumed to be "white noise". The 

following section provides an overview of the variables used in the system (3.2). 

3.2. Data and variables 

The data used in the empirical analysis are aggregate time-series data for Denmark covering the 

years 1980-2007. Our period of observation is thus 28 years. For each year, we have information 

on aggregate freight activity measured in 𝑡𝑘𝑚, aggregate VKT of all trucks registered in 

Denmark, aggregate fuel consumption (of all trucks registered in Denmark), total actual hours 

worked in road freight transportation, average truck capacity (measured as average truck total 

axle weight), average truck age, number of trucks in the truck stock, fuel price, compensation of 

employees in road freight transportation, price index for vehicles and spare parts, and a range of 

explanatory variables (GDP, total annual VKT for all motor vehicles registered in Denmark, and 

the infrastructure measure (kilometre road in Denmark)). Energy efficiency (𝐸) has been 

approximated as the VKT per litre of consumed fuel calculated as the ratio between the total 

annual VKT and the total annual fuel use. Our measure of congestion (𝐷) has been compiled as 

the ratio of the total annual VKT for all motor vehicles registered in Denmark to the total 

kilometres of road in Denmark. 

                                                      
15 Notice here: log(𝑃𝑉) = log �𝑃

𝑓

𝐸
� = log(𝑃𝑓) − log(𝐸). 
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We identify each variable using both the generic notation in (3.1) and the variable name 

used in our empirical specification (3.2). We express all the dependent variables and (most of 

the) independent variables in natural logarithms because this seems a more plausible relationship 

and because it is easy to interpret estimation results as elasticities. All monetary variables are 

real. Table 1 shows summary statistics for the data used in our specification. Data sources are 

given in Appendix B. 

Table 1. Summary statistics for selected variables 
Variable Mean Std. Dev. Minimum Maximum 
Freight activity 𝑌, (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠 𝑡𝑘𝑚) 9,528 1,370 6,941 11,738 
Vehicle kilometre travelled 𝑉, (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠 𝑉𝐾𝑇) 2,041 154 1,798 2,364 
Actual hours worked in road freight transportation 𝐿, (1,000 ℎ𝑜𝑢𝑟𝑠) 64,458 4,508 56,150 71,972 
Number of trucks 𝑀, (𝑡𝑟𝑢𝑐𝑘𝑠) 47,220 1,715 44,014 50,764 
Average truck capacity 𝑆, (𝑡𝑜𝑛𝑛𝑒𝑠) 10.59 1.47 7.60 14.10 
Average truck age 𝐻, (𝑦𝑒𝑎𝑟𝑠) 7.01 1.11 5.02 8.40 
VKT per litre of consumed fuel 𝐸, (𝑘𝑚/𝑙) 2.74 0.48 2.18 4.00 
Fuel price 𝑃𝐹, (𝐷𝐾𝐾/l) 5.92 0.88 3.71 7.53 
Price index for vehicles and spare parts PIT, (𝑖𝑛𝑑𝑒𝑥) 0.82 0.17 0.43 1.03 
Compensation of employees in freight transportation 𝑤, (𝐷𝐾𝐾/ℎ𝑜𝑢𝑟) 95.974 32.441 37.065 150.530 
Notes: Number of observations: 28. One DKK is approximately 0.13€ in 2005. 
 

The dependent variables are: 

𝑌: Freight activity (logarithm: 𝑦). 

𝑉: Vehicle kilometre travelled (VKT) (logarithm: 𝑣). 

L: Actual hours worked in road freight transportation (logarithm: 𝑙). 

𝑀: Truck stock (logarithm: 𝑚). 

𝑆: Average truck capacity (logarithm: 𝑠). 

𝐻: Average truck age (logarithm: ℎ). 

𝐸: Number of driven kilometres per litre of consumed fuel (logarithm: 𝑒). 

The independent variables are: 

𝑃𝐹 : Fuel price (logarithm: 𝑝𝑓). 

𝑋𝐸 includes index of congestion 𝐷 (logarithm: 𝑑) and time trend to proxy for unmeasured 

changes (for example technological improvements). 

𝑋𝐿, 𝑋𝑆, 𝑋𝐻, 𝑋𝑀 and 𝑋𝑉 include the price index for vehicles and spare parts (𝑃𝐼𝑇) 

(logarithm: 𝑝𝑖𝑡), and the average compensation of employees in road freight 

transportation per hour (logarithm: 𝑤). 
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𝑋𝑌 includes the price index for vehicles and spare parts (𝑃𝐼𝑇) (logarithm: 𝑝𝑖𝑡), the average 

compensation of employees in road freight transportation per hour (logarithm: 𝑤), 

and the gross national income (GDP) in constant 2000 prices (logarithm: 𝑔𝑑𝑝). 

 

4. Empirical results 

Two procedures are available for estimating systems of simultaneous equations containing 

several endogenous variables, i.e. two-stage least squares (2SLS) and three-stage least squares 

(3SLS). 2SLS first estimates a reduced form of the system in which each equation contains as 

variables only the exogenous contemporary variables and (for technical reasons) one lagged 

value of all the exogenous variables and two lagged values of all endogenous variables 

(Wooldridge, 2002, ch. 8). Then it estimates each equation by replacing the endogenous 

variables on its right-hand side by their predicted values from the first stage. 3SLS in addition 

estimates also correlations in the error terms among equations, and then re-estimates the system 

taking these correlations into account.16 This is likely in our system because, for example, 

unobserved factors like economic expectations might influence both the truck usage and the 

truck stock. Moreover, there is only little difference between 3SLS and 2SLS estimates. The 

3SLS provides slightly better precision of estimates. Thus, there is no indication for problems 

that might arise from misspecification. We therefore consider the 3SLS results as our best 

estimates. The ordinary least squares (OLS) results are shown for comparison.17

We reduce each equation to the simplest form including only the significant variables, 

due to the small number of observations and high correlation between the factor input prices. So 

the final model specification was obtained by a systematic process of eliminating the 

insignificant variables. The results of estimating the final specification of the structural system 

(3.2) are presented in tables 2-8. 

 Consequently, 

we present results from two estimation methods: OLS and 3SLS.   

 

 

 
                                                      
16 The advantage of 3SLS is that it makes more efficient use of the data, by taking advantage of the information in 
the correlations among the endogenous variables, and therefore permits a more precise measurement of parameters.  
The disadvantage is that if there are errors in the specification of one equation, then this error affects the other 
equations more directly than with 2SLS. 
17 Recall here that the OLS procedure ignores the reverse causation. 
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4.1. Structural equations 

The VKT per litre of consumed fuel equation (Table 2) explains the approximated fuel efficiency 

for constant average truck capacity and constant average truck age. Most coefficients are 

measured with good precision and demonstrate strong and plausible effects. Unsurprisingly, 

increase in average truck capacity and average truck age decreases average VKT per litre of 

consumed fuel. The effect from an increase in the average truck capacity is −1.12 in the short 

run and −1.12/(1 − 0.31) = −1.62 in the long run. A one percent increase in the average truck 

capacity therefore implies a 1. 12% decrease in the average VKT per litre of consumed fuel in 

the short run and 1.62% in the long run. The corresponding effects from an increase in the 

average truck age are −0.91 in the short run and −1.31 in the long run. Moreover, our measure 

of congestion has statistically significant negative effect on the average VKT per litre of 

consumed fuel (negative coefficient on 𝑑). The negative effect of congestion can be seen as a 

confirmation that increasing congestion implies environmental externality in the form of higher 

fuel use and consequently higher traffic related emissions, a result found by many other 

researchers. The long run effect of an increase in our measure of congestion is −2.15.  

Table 2. VKT per litre of consumed fuel equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of VKT per litre of consumed fuel (𝑒𝑡−1)           0.5410** 

         (0.1916) 
          0.3096 
         (0.2027) 

Natural logarithm of average truck capacity (𝑠)          -0.7658* 
         (0.4092) 

         -1.1200** 
         (0.4441) 

Natural logarithm of average truck age (ℎ)          -0.5829** 
         (0.2619) 

         -0.9054*** 
         (0.2789) 

Natural logarithm of index of congestion (𝑑)          -0.8538 
         (0.6149) 

         -1.4845** 
         (0.5994) 

Trend           0.0342** 
         (0.0162) 

          0.0546*** 
         (0.0165) 

Constant           6.6992* 
         (3.4695) 

        10.9149*** 
         (3.4668) 

Rho           0.0017 
         (0.2620) 

          0.0366 
         (0.2578) 

Adjusted R-squared           0.8620           0.8057 
SSE           0.0623           0.0654 
No. of observations              27              26 
Notes: Dependent variable is the natural logarithm of VKT per litre of consumed fuel (𝑒); ***,**,* indicate that estimates are significantly 
different from zero at the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
 

The positive significant coefficient associated with the time trend shows a tendency toward a 

more energy efficient truck stock for a constant average truck capacity and constant average 

truck age, i.e. presumably due to the improvements in the available technology. The coefficient 

on the lagged dependent variable implies that VKT per litre of consumed fuel demonstrates 
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considerable inertia in trucking firm behaviour, with the adjustment in VKT per litre of 

consumed fuel in a given year by approximately 69% percent of the ultimate adjustment. The 

equation does not exhibit autocorrelation. 

Table 3. Labour demand equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of labour demand (𝑙𝑡−1)          0.2759 

        (0.3437) 
         0.3729 
        (0.2343) 

Natural logarithm of fuel price (pf)          0.1046 
        (0.0875) 

         0.0801 
        (0.0855) 

Natural logarithm of freight activity (y)          0.1721 
        (0.1706) 

         0.4939** 
        (0.1827) 

Natural logarithm of wages (w)          0.0272 
        (0.0730) 

        -0.1526** 
        (0.0630) 

Constant          6.3156 
        (3.8081) 

         1.9220 
        (1.9680) 

Rho          0.6544** 
        (0.3057) 

         0.2176 
        (0.2409) 

Adjusted R-squared          0.8084          0.8085 
SSE          0.0194          0.0161 
No. of observations             27             26 
Notes: Dependent variable is the natural logarithm of labour demand (𝑙); ***,**,* indicate that estimates are significantly different from zero at 
the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
 

The labour demand (Table 3) is explained, unsurprisingly, by the freight activity and the 

wages. Increase in the freight activity has positive effect on labour demand (0.49 and 0.79 in the 

short run and the long run, respectively), while an increase in wages has negative effect on 

labour demand (−0.15 and −0.24 in the short run and the long run, respectively). The relatively 

small wage effect on labour demand is possibly due to the fact that a truck has to be operated by 

a driver regardless of the wage level. The labour demand equation does not exhibit 

autocorrelation (insignificant coefficient associated with rho). 

The average truck capacity equation (Table 4) shows a significant effect of fuel price; but 

the effect is small (0.12). This effect is however more than four times higher in the long run 

(0.50). Thus, the trucking firm responses to increase in the fuel costs through expansion of the 

average truck capacity. The expansion of the average truck capacity increases the fuel use per 

kilometre (see table 2) but less distance has to be driven for the same payload. We will see that 

the latter effect offsets the effect of the fuel price on the average truck capacity and that an 

increase in the fuel price results in the reduction in the overall annual fuel use. The price index 

for vehicles and spare parts has as expected negative impact on the average truck capacity. 

Moreover, wages have positive significant effect, possibly because increase in wages decreases 

the labour demand (see table 3), so for a given freight activity, the trucking firm must extend the 
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average truck capacity in order to be able to ship the same amount of cargo using less labour. 

The truck capacity demonstrates considerable inertia in trucking firm behaviour. The equation 

does not exhibit autocorrelation. 
Table 4. Average truck capacity equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of average truck capacity (𝑠𝑡−1)          0.8039*** 

        (0.1670) 
         0.7548*** 
        (0.1660) 

Natural logarithm of fuel price (𝑝𝑓)          0.1282* 
        (0.0656) 

         0.1234* 
        (0.0664) 

Natural logarithm of price index for vehicles and spare parts (𝑝𝑖𝑡)         -0.2843 
        (0.1728) 

        -0.2175 
        (0.1692) 

Natural logarithm of wages (𝑤)          0.1808 
        (0.1223) 

         0.1697 
        (0.1187) 

Constant          1.9333 
        (1.2015) 

         1.7357 
        (1.1720) 

Rho         -0.4108* 
        (0.2366) 

        -0.2494 
        (0.2201) 

Adjusted R-squared          0.9533          0.9439 
SSE          0.0159          0.0158 
No. of observations             27             26 
Notes: Dependent variable is the natural logarithm of average truck capacity (𝑠); ***,**,* indicate that estimates are significantly different from 
zero at the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
 

The results for the average truck age equation (Table 5) show a small but significant 

effect of fuel price, indicating that trucking firms response to increases in the fuel cost through 

rejuvenation of the truck stock, i.e. improvements in the truck technology. The fuel price effect 

on the average truck age is −0.15 in the short run and −0.53 in the long run. Predictably, the 

price index for vehicles and spare parts has positive effect on average truck age.  

Table 5. Average truck age equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of average truck age (ℎ𝑡−1)          0.5144** 

        (0.1912) 
         0.7113*** 
        (0.2299) 

Natural logarithm of fuel price (𝑝𝑓)         -0.1540 
        (0.0914) 

        -0.1517* 
        (0.0856) 

Natural logarithm of price index for vehicles and spare parts (𝑝𝑖𝑡)          0.0856 
        (0.2122) 

         0.2030 
        (0.2188) 

Natural logarithm of wages (𝑤)          0.0294 
        (0.1493) 

         0.1093 
        (0.1880) 

Constant          0.9339 
        (1.3116) 

         0.1914 
        (1.4101) 

Rho          0.9202*** 
        (0.1153) 

         0.6053** 
        (0.2293) 

Adjusted R-squared          0.9549          0.9639 
SSE          0.0230          0.0171 
No. of observations             27             26 
Notes: Dependent variable is the natural logarithm of average truck age (ℎ); ***,**,* indicate that estimates are significantly different from zero 
at the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
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Wages do not have significant effect on average truck age. The average truck age equation 

exhibits, as expected, considerable autocorrelation and demonstrates substantial inertia in 

trucking firm behaviour. The long run effect of the estimated coefficients is approximately 3.5 

times higher than the short run effect. 

In the truck stock equation (Table 6) most of the coefficients have strong and plausible 

effects. As expected, fuel price has negative significant effect, but this effect is relatively small 

(−0.07 in the short run and −0.14 in the long run). Moreover, freight activity does not have 

significant effect. Since a truck is an ordinary good, the effect of the price index for vehicles and 

spare parts is, as expected, negative. This effect is however relatively small and significantly 

different from zero only at 16%. Wages have positive significant effect on truck age (an increase 

in wages increases the size of the truck stock) possibly for the same reason as for the average 

truck capacity. Unsurprisingly, there is a considerable inertia in expanding or contracting the 

truck stock. This most likely reflects the transaction costs of buying and selling trucks. The 

equation exhibits considerable autocorrelation (significant coefficient associated with rho). 

Table 6. Truck stock equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of average number of trucks (𝑚𝑡−1)          0.6233*** 

        (0.1626) 
         0.5252* 
        (0.2592) 

Natural logarithm of fuel price (𝑝𝑓)         -0.0794** 
        (0.0353) 

        -0.0660* 
        (0.0340) 

Natural logarithm of freight activity (y)         -0.0205 
        (0.0699) 

         0.0343 
        (0.0660) 

Natural logarithm of price index for vehicles and spare parts (𝑝𝑖𝑡)         -0.0658 
        (0.0866) 

        -0.1274 
        (0.0874) 

Natural logarithm of wages (𝑤)          0.1234** 
        (0.0536) 

         0.1280* 
        (0.0663) 

Constant          4.9708** 
        (1.7556) 

         5.7835* 
        (2.8322) 

Rho          0.8216*** 
        (0.1583) 

         0.7454** 
        (0.2895) 

Adjusted R-squared          0.8870          0.8727 
SSE          0.0031          0.0033 
No. of observations             27             26 
Notes: Dependent variable is the natural logarithm of average number of trucks (𝑚); ***,**,* indicate that estimates are significantly different 
from zero at the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
 

The VKT equation (Table 7) explains the amount of driving performed by the average 

trucking firm for constant freight activity. The fuel price does not have significant effect on 

VKT. So, the direct effect of a change in fuel price on traffic volume is unsurprisingly limited, 

because the trucking firm can only to some extent reduce the traffic volume for a given freight 

activity through better matching of the trucks’ capacity to shipment (see section 2). However, the 
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trucking firm’s decision regarding the traffic volume is highly dependent of the freight activity 

for given factor input prices as indicated by the estimated coefficient associated with the freight 

activity. The elasticity of VKT with respect to freight activity is 0.40 in the short run and 0.49 in 

the long run. The price index for vehicles and spare parts does not have a significant effect on 

VKT. Wages have positive effect on traffic volume, probably because the wage indicator does 

not adequately measure the truck drivers’ wages in this equation but instead the general 

economic development, since wages rise in periods of economic prosperity. VKT demonstrates 

mild inertia in trucking firm behaviour, reflecting the time needed to adjust planned travel 

behaviour. The VKT equation exhibits substantial autocorrelation. 

Table 7. VKT equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of VKT (𝑣𝑡−1)          0.3737* 

        (0.2021) 
          0.1791 
         (0.1744) 

Natural logarithm of fuel price (𝑝𝑓)         -0.0943 
        (0.0865) 

         -0.0005 
         (0.0872) 

Natural logarithm of freight activity (y)          0.1568 
        (0.1600) 

          0.4029** 
         (0.1629) 

Natural logarithm of price index for vehicles and spare parts (𝑝𝑖𝑡)         -0.0085 
        (0.1918) 

          0.0799 
         (0.1865) 

Natural logarithm of wages (𝑤)          0.1051 
        (0.1251) 

          0.3790* 
         (0.2143) 

Constant          3.8049* 
        (1.9057) 

          2.9213 
         (1.7153) 

Rho          0.8352*** 
        (0.1552) 

          0.9004*** 
         (0.0351) 

Adjusted R-squared          0.8616           0.8487 
SSE          0.0161           0.0164 
No. of observations             27              26 
Notes: Dependent variable is the natural logarithm of VKT (𝑣); ***,**,* indicate that estimates are significantly different from zero at the 0.01, 
at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
 

Table 8 shows the estimation results for freight activity. The fuel price has a significant 

negative effect and the VKT per litre of consumed fuel (the approximated fuel efficiency) has a 

positive effect, confirming that an increase in fuel cost will raise the marginal costs of production 

and consequently decrease the demand for freight activity.18

                                                      
18 Recall here that, at the market equilibrium, the output price equals marginal costs. 

 The elasticity of freight activity 

with respect to fuel cost per kilometre is −0.20 − 0.26 = −0.46 in the short run and −0.57 in 

the long run. An increase in GDP has, as expected, a positive and significant effect on freight 

activity (0.55 and 0.67 in the short run and in the long run, respectively). The dynamic effects 

are small and insignificant, suggesting that, in the short run, the trucking firms adapt the freight 

activity to changes in the economic environment. 
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Table 8. Freight activity equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of freight activity (𝑦𝑡−1)          0.1200 

        (0.1648) 
          0.1803 
         (0.1522) 

Natural logarithm of fuel price (𝑝𝑓)         -0.1756* 
        (0.0915) 

         -0.2048** 
         (0.0905) 

Natural logarithm of VKT per litre of consumed fuel (𝑒)          0.3654*** 
        (0.0946) 

          0.2614** 
         (0.1000) 

Natural logarithm of GDP (𝑔𝑑𝑝)          0.3916* 
        (0.2002) 

          0.5517** 
         (0.2079) 

Natural logarithm of wages (𝑤)          0.1218 
        (0.2191) 

          0.1066 
         (0.2237) 

Natural logarithm of price index for vehicles and spare parts (𝑝𝑖𝑡)          0.3871 
        (0.2442) 

          0.3683 
         (0.2308) 

Constant          7.1955*** 
        (2.0766) 

          7.5793*** 
         (2.1548) 

Rho         -0.0078 
        (0.0299) 

          0.2373 
         (0.1818) 

Adjusted R-squared          0.9655           0.9612 
SSE          0.0136           0.0132 
No. of observations             27              26 
Notes: Dependent variable is the natural logarithm of freight activity (𝑦); ***,**,* indicate that estimates are significantly different from zero at 
the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 

 

4.2 Rebound effect and other elasticities 

We consider the 3SLS results our best estimates and use them for the analysis of the 

determinants of trucking firm fuel use and the rebound effect. Table 9 shows selected elasticities 

implied by the structural model, the effect of fuel price on trucking firm fuel use, and the 

rebound effect. 

We estimate the rebound effect based on (2.4). In system (3.2), the formula for rebound 

effect becomes: 

𝜀𝑉,𝑌𝜀𝑌,𝑃𝑉 = 𝛼𝑣𝑦�𝛽1
𝑦 − 𝛼𝑦𝑒�.                                                                                         (4.1) 

The long run rebound effect has been calculated using the same formula, and in addition by 

accounting for lagged values. Our best estimate of the average rebound effect in the applied 

sample is 18.8% in the short run and 27.9% in the long run (see Table 9). This is in line with a 

range of other studies (see e.g. Matos and Silva, 2011).19

                                                      
19 Matos and Silva (2011) estimated the long run rebound effect for the road freight transportation in Portugal to be 
about 24.1%. Moreover, estimates of personal motor-vehicle rebound effect for the motor vehicles lie within a range 
of 10-30% (Small and van Dender, 2007; Hymel et al., 2010).    

 The elasticity of VKT with respect to 

freight activity �εV,Y�  and the elasticity of freight activity with respect to fuel cost per kilometre 

�𝜀𝑌,𝑃𝑉� are of more or less same magnitude. The elasticity of VKT with respect to freight activity 

has a slightly smaller effect. This appears to confirm the theoretical expectation that higher fuel 
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prices first and foremost imply a decrease in freight activity which again has a considerable 

effect on the traffic volume. Use of OLS underestimates the short run and long run rebound 

effects by 54.9% and 44.9%, respectively.20

Table 9. Rebound effect and other elasticities 

 This is possibly the case because OLS ignores 

reverse causation. 

        Short run        Long run 
Elasticity of freight activity with respect to fuel price �𝜀𝑌,𝑃𝐹�         -0.2048         -0.2498 
Elasticity of freight activity with respect to fuel efficiency �𝜀𝑌,𝐸�          0.2614          0.3190 
Elasticity of VKT with respect to freight activity �𝜀𝑉,𝑌�          0.4029          0.4908 
Elasticity of VKT with respect to fuel price �𝜀𝑉,𝑃𝐹�         -0.0005         -0.0006 
Elasticity of fuel efficiency with respect to average truck capacity �𝜀𝐸,𝑆�         -1.1200         -1.6222 
Elasticity of fuel efficiency with respect to average truck age �𝜀𝐸,𝐻�        - 0.9054         -1.3114 
Elasticity of average truck capacity with respect to fuel price �𝜀𝑆,𝑃𝐹�          0.1234          0.5031 
Elasticity of average truck age with respect to fuel price �𝜀𝐻,𝑃𝐹�         -0.1517         -0.5255 
Rebound effect (−𝜀𝑉,𝑌𝜀𝑌,𝑃𝑉)          0.1878          0.2792 
Elasticity of fuel use with respect to fuel price �𝜀𝐹,𝑃𝐹�         -0.1877         -0.1883 
Notes: All elasticities are estimated using 3SLS; 𝜀𝑌,𝑃𝑉 = 𝜀𝑌,𝑃𝐹 − 𝜀𝑌,𝐸. 
 

Table 9 also shows the total effect of a change in fuel price on the average trucking firm 

fuel use. We estimate this effect based on (2.5). Since the effects of the freight activity on the 

average truck age and the average truck capacity are not significant, (2.5) reduces to: 

𝜀𝐹,𝑃𝐹 = 𝜀𝑉,𝑃𝐹 + 𝜀𝑉,𝑌𝜀𝑌,𝑃𝑉�1 − 𝜀𝐸,𝑃𝐹� − 𝜀𝐸,𝑃𝐹 ,                                                              (4.2) 

where 𝜀𝐸,𝑃𝐹 = 𝜀𝐸,𝑆𝜀𝑆,𝑃𝐹 + 𝜀𝐸,𝐻𝜀𝐻,𝑃𝐹. In system (3.2), the formula for the elasticity of fuel use 

with respect to fuel price becomes: 

𝜀𝐹,𝑃𝐹 = 𝛽1𝑣 + 𝛼𝑣𝑦�𝛽1
𝑦 − 𝛼𝑦𝑒��1 − 𝜀𝑒,𝑝𝐹� − 𝜀𝑒,𝑝𝐹 ,                                                       (4.3) 

where 𝜀𝑒,𝑝𝐹 = 𝛼𝑒𝑠𝛽1𝑠 + 𝛼𝑒ℎ𝛽1ℎ. The long run effect has been calculated using the same formula, 

and in addition by accounting for lagged values. 

Table 9 shows that higher fuel prices decrease the average trucking firm fuel use, but 

only by a small amount. The estimation results suggest that the response to a fuel price increase 

is dominated by changes in the freight activity and the traffic volume rather than changes in the 

VKT per litre of consumed fuel (approximated fuel efficiency). An 1% increase in the fuel price 

decreases the VKT through the freight activity (εV,Y𝜀𝑌,𝑃𝑉) by 0.19% in the short run and 0.28% 

in the long run. As discussed in the previous section, an increase in the fuel price has more or 

less no effect on the VKT. Finally, changes in the VKT per litre of consumed fuel of a change in 

                                                      
20 Notice the insignificant elasticity of VKT with respect to freight activity in Table 7. So, OLS fails to estimate 
rebound effect. 
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the fuel price �εE,SεS,PF + εE,HεH,PF� also affect the trucking industry fuel use. The trucking firm 

responds to increase in the fuel price through expansion of the average truck capacity and an 

increase of the average truck capacity decreases the VKT per litre of consumed fuel, presumably 

because for given VKT trucks with higher capacity use more fuel. The total effect on the VKT 

per litre of consumed fuel of a change in the fuel price through average truck capacity is −0.14 

in the short run and −0.82 in the long run. The trucking firm also responds to an increase in the 

fuel costs through rejuvenation of the truck stock, and the newer trucks use less fuel per 

kilometre. The total effect on the VKT per litre of consumed fuel of a change in the fuel price 

through the average truck age is 0.14 in the short run and 0.69 in the long run. Thus, an increase 

in the fuel price has negative effect on the average VKT per litre of consumed fuel 

(approximated fuel efficiency), i.e. a 1% increase in the fuel price decreases average VKT per 

litre of consumed fuel by 0.001% and 0.13% in the short run and in the long run, respectively. 

However, less distance has to be driven for the same payload, so the total effect on the average 

trucking firm fuel use is negative. Thus, an increase in the fuel price results in the reduction in 

the trucking firm’s overall fuel use. The elasticity of fuel use with respect to fuel price is −0.19 

in the short run and in the long run. 

 

4.3 Robustness checks 

In this section, we discuss the sensitivity of the estimation results to assumptions regarding the 

model dynamics (autoregression and autocorrelation) and to known problems with the aggregate 

freight activity data. 

First, our estimates (especially long term estimates) rely on assumptions regarding the 

model dynamics, i.e. the one-year lagged value of the dependent variable (autoregression) and 

the autoregressive error terms (autocorrelation). Moreover, the role of the one-year lagged value 

of the dependent variable in determining the long run effect is sensitive to whether or not 

autocorrelation is controlled for. In order to check the dependence of the estimated effects on the 

autocorrelation, we estimate a model shown in Appendix C where the autoregression of the error 

term is omitted. The exclusion of the autoregressive error terms increases the estimates of the 

rebound effect from 19% to 26% in the short run and from 28% to 69% in the long run. 

Furthermore, in the unrestricted model (model specification incorporating both autoregression 

and autocorrelation), the total effect of changes in fuel price on the average trucking firm fuel 
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use (εF,PF) in the short run is more or less identical to this in the restricted model (model 

specification incorporating autoregression but not autocorrelation). The effect of changes in fuel 

prices on the trucking firm fuel use in the long run is almost two times higher in the restricted 

model than in the unrestricted model. However, the overall performance of the restricted model 

is unsatisfactory, especially its dynamic properties. The Godfrey Lagrange multiplier test for 

serially correlated residuals indicates strong autocorrelation in almost all equations (see 

Appendix C).21 So, we use the model specification incorporating both autoregression and 

autocorrelation, since the Godfrey Lagrange multiplier test for serially correlated residuals 

rejects the null hypothesis that the errors are serially uncorrelated in the model specification 

incorporating autoregression but not autocorrelation. Therefore we have some confidence that 

the resulting estimates of the coefficients of the lagged endogenous variables in the preferable 

empirical specification are accurate and give a valid indication of the extent of long-run effects. 

Furthermore, including both autoregression and autocorrelation does not seem to affect the 

precision of the other estimates.22

The second robustness check concerns the aggregate freight activity data collected by the 

Statistics Denmark. Data are collected in quarterly sample surveys. The response rate at the 

closing of the survey is relatively high (98%).

  

23

                                                      
21 The null hypothesis of Godfrey’s tests is that the equation residuals are white noise. However, if the equation 
includes autoregressive error model of order 𝑡 (𝐴𝑅(𝑡)) the test is for the null hypothesis that the structural errors are 
from an 𝐴𝑅(𝑡 + 1) process versus the alternative hypothesis that the errors are from an 𝐴𝑅(𝑡) process. 

 However, about 40% of the questionnaires do 

not contain journey data. In these questionnaires selected vehicles were inactive in the reference 

period because of lacking orders, holiday closure, or vehicle technical service. Consequently, we 

have reason to think that this exceptionally high share of inactive vehicles in the reference period 

biases the estimation results. However, if the aggregate freight activity data are underestimated 

every year by the roughly same percent, then the impact of this high share of inactive vehicles in 

the reference period on the estimation results will be minimal. We have no reason to think that 

the sources of measurement error are persistent over time and unrelated to the independent 

variables, and because we do not have information of the share of inactive vehicles for every 

22 The estimation of a specification including the two-year lagged value of the dependent variable could not be 
performed due to the limited number of observations. 
23http://www.dst.dk/HomeUK/Guide/documentation/Varedeklarationer/emnegruppe/emne.aspx?sysrid=992   
(accessed 25/12 2010). 
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year, we can only conclude that better data on the aggregate freight activity would add 

considerably to the confidence in estimation results. 

 

5. Conclusion 

This paper analyses the determinants of road freight transportation fuel use. We develop a simple 

model to show that the trucking firm fuel use depends on traffic volume, freight activity, 

characteristics of the truck stock, factor input prices, and congestion. We show that the rebound 

effect for road freight transportation can be decomposed into the negative of the product of the 

elasticity by which changes in fuel costs affect the freight activity and the elasticity by which 

changes in freight activity affects traffic volume. The model is applied to Danish aggregate time 

series data covering the years 1980-2007. The empirical results provide some insights into the 

determinants of the road freight transportation fuel use. 

We find that higher fuel prices decrease the trucking firm fuel use, but only by a small 

amount. Surprisingly, an increase in the fuel price has negative effect on the fuel efficiency, i.e. a 

1% increase in the fuel price decreases the fuel efficiency by 0.13% in the long run. However, 

less distance has to be driven for the same payload, so an increase in the fuel price results, as 

expected, in the reduction in the trucking firm fuel use. Moreover, we find that the short run and 

the long run rebound effects for road freight transportation are 19% and 28%, respectively. 

Analyses of the determinants of the trucking firm fuel use and estimates of the rebound 

effect are highly relevant for policy. For example, measurements of the rebound effect for road 

freight transportation can contribute to the ongoing debate whether to adapt the rules on the 

optimal weights and dimensions of heavy trucks in EU. Arki (2009) shows that introducing 

longer and heavier vehicles (up to 20.75 meters, 44 tonnes) Europe-wide will be overall 

beneficial for society. Moreover, Arki (2009) argues that the introduction of longer and heavier 

vehicles could lower fuel consumption of road freight transportation by 3.6%. We showed that 

an increase in the weight of heavy trucks will reduce the fuel efficiency and consequently affect 

the fuel cost per kilometre implying the rebound effect that to some extent will offset the original 

energy saving. So, the introduction of longer and heavier vehicles will most likely not result in a 

3.6% fuel saving, but only in a 2.6% reduction due to the rebound effect. This stresses the 

importance of including rebound effects in assessments of new policies. Moreover,  

strengthening fuel efficiency standards for heavy trucks in the EU can potentially result in 
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undesirable effects on traffic congestion, because strategies that increase fuel efficiency, and 

therefore reduce the per-kilometre cost of driving, tend to increase total truck use. It is therefore 

important to account for the rebound effect to more accurately evaluate energy policy changes. 
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Appendix A. Rebound effect 

Assume now that 𝐸 exogenously changes. We know that traffic volume 𝑉 depends (among other 

things) on the fuel price and freight activity (see section 2.1). Moreover, we know that the freight 

activity depends (among other things) on marginal costs, a part of which is the per-kilometre fuel 

cost (𝑃𝑉).24

𝐹 = 𝑉�𝑌(𝑃𝑉),𝐷�,𝑤,𝑃𝐹,𝜶�
E�

  ,                                                                                                   (A.1) 

 Fuel consumption and VKT are related through fuel efficiency (see (2.1)): 

where PV = PF

E
. Differentiating (A.1) with respect to E, we have:  

𝜕𝐹
𝜕𝐸

= −𝑃𝐹

𝐸3
𝜕𝑉
𝜕𝑌

𝜕𝑌
𝜕𝑃𝑉

− 𝑉
𝐸2

.                                                                                                     (A.2) 

Now multiplying both sides with 𝐸/𝐹 and rearranging we get: 

𝜀𝐹,𝐸 = −1 − 𝜀𝑉,𝑌𝜀𝑌,𝑃𝑉.                                                                                                  (A.3) 

Notice now that, using the solution to PMP, fuel use can be shown to be: 

F =
V�Y� PF

E�S�PF,Y� ,D� ,w,𝛂�,H�PF,Y� ,D� ,w,𝛂��
�,D� ,w,PF,𝛂�

E�S�Y�P
F
E� �,D� ,w,PF,𝛂�,H�Y�P

F
E� �,D� ,w,PF,𝛂��

.                                                                    (A.4) 

Moreover, a simple calculation using the definition of elasticity shows that: 
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⇔  

                                                      
24 Smith (1957) showed that the trucking firm fuel use is a function of the VKT and the vehicle gross weight, while 
the total aggregate fuel use by the trucking industry is a function of both VKT and freight activity. 
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𝜀𝐹,𝑃𝐹 = 𝜀𝑉,𝑃𝐹 + 𝜀𝑉,𝑌𝜀𝑌,𝑃𝑉�1 − εE,PF� − εE,PF − εE,PV ,                                                 (A.5) 

where εE,PF = εE,SεS,PF + εE,HεH,PF and εE,PV = εY,PV�εE,SεS,Y + εE,HεH,Y�. 

If 𝜀𝑆,𝑌 = 0 and 𝜀𝐻,𝑌 = 0, then: 

𝜀𝐹,𝑃𝐹 = 𝜀𝑉,𝑃𝐹 + 𝜀𝑉,𝑌𝜀𝑌,𝑃𝑉�1 − εE,PF� − εE,PF.                                                               (A.6) 

 

Appendix B. Data sources 

Aggregate freight activity has been compiled by the National Environmental Research Institute – 

Aarhus University from several different reports (Statistics Denmark, 2000; The Danish Car 

Importers Association, 2001-2008; The Danish Road Directorate, 1998; Winther, 2007), which 

in turn are based on data submitted by enterprises performing transport for their own account or 

for hire or reward. The data are collected by Statistics Denmark in quarterly sample surveys 

including trucks over 6 tonnes of maximum permissible weight. The survey is described in 

Statistics Denmark’s online documentation.25 Aggregate VKT of all trucks registered in Denmark 

has been compiled by Statistics Denmark based on exact odometer readings from the so-called 

MOT tests, a more accurate basis than asking respondents to remember VKT.26

www.statbank.dk

 Data on the size 

of the truck stock are published regularly by Statistics Denmark in “News from Statistics 

Denmark” (“Nyt fra Danmarks Statistik”), in the series “Statistical News” ("Statistiske 

Efterretninger"), and in Statistics Denmark’s online-database  (accessed 25/12 

2010). Average truck capacity (measured as axle load in kilograms) and average truck age are 

computed from administrative register data. Data on fuel consumption are taken from Danish 

Environmental Accounts (see www.statbank.dk); the statistics on fuel consumption are reprinted 

in many sources, such as Winther (2007). Fuel prices are from The Danish Petroleum 

Association web page (http://oliebranchen.dk/da-DK/Service/English.aspx (accessed 25/12 

2010)). Applied infrastructure measure (kilometre road in Denmark) is easily taken from the 

Danish Road Directorate’s online database (http://www.vejdirektoratet.dk (accessed 25/12 

2010)). Data on total actual hours worked in road freight transportation, compensation of road 

freight transportation employees, price index for vehicles and spare parts, and GDP are taken 
                                                      
25 For detailed description of the survey see http://www.dst.dk/HomeUK/Guide/documentation/Varedeklarationer/ 
(accessed 25/12 2010). 
26 The MOT test is a vehicle check that is compulsory for all vehicles registered in Denmark. The name derives from 
the Ministry of Transport. All Danish trucks have to pass such MOT tests when first registered, and then at statutory 
time intervals, i.e. every year. Each time a truck passes the MOT test, the inspection authority reads the odometer on 
the day of the MOT test, records date of the MOT test and several different identification data regarding the vehicle. 

http://www.statbank.dk/�
http://www.statbank.dk/�
http://oliebranchen.dk/da-DK/Service/English.aspx�
http://www.vejdirektoratet.dk/�
http://www.dst.dk/HomeUK/Guide/documentation/Varedeklarationer/emnegruppe/emne.aspx?sysrid=992�
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from Statistics Denmark’s online database www.statbank.dk. The data is available from the 

author on request. 

 

Appendix C. Estimation results for specifications without control for autocorrelation   
Table C1. VKT per litre of consumed fuel equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of VKT per litre of consumed fuel (𝑒𝑡−1)           0.5414*** 

         (0.1668) 
          0.3843** 
         (0.1547) 

Natural logarithm of average truck capacity (𝑠)          -0.7664* 
         (0.3991) 

         -0.9942** 
         (0.4149) 

Natural logarithm of average truck age (ℎ)          -0.5826** 
         (0.2460) 

         -0.8434*** 
         (0.2283) 

Natural logarithm of index of congestion (𝑑)          -0.8527 
         (0.5695) 

         -1.1583** 
         (0.5164) 

Trend           0.0341** 
         (0.0155) 

          0.0465*** 
         (0.0146) 

Constant           6.6952* 
         (3.2353) 

          9.0816*** 
         (2.9981) 

Adjusted R-squared           0.8686           0.8226 
SSE           0.0623           0.0629 
Godfrey LM test statistics           0.00           1.48 
No. of observations              27              26 
Notes: Dependent variable is the natural logarithm of VKT per litre of consumed fuel (𝑒); ***,**,* indicate that estimates are significantly 
different from zero at the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
 
Table C2. Labour demand equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of labour demand (𝑙𝑡−1)          0.5339** 

        (0.2115) 
         0.2654 
        (0.1602) 

Natural logarithm of fuel price (pf)          0.0509 
        (0.0851) 

         0.0666 
        (0.0730) 

Natural logarithm of freight activity (y)          0.2901 
        (0.2107) 

         0.5918*** 
        (0.1756) 

Natural logarithm of wages (w)         -0.0628 
        (0.0634) 

        -0.1683*** 
        (0.0568) 

Constant          2.2669 
        (1.5754) 

         2.2018 * 
        (1.2640) 

Adjusted R-squared          0.7778          0.7900 
SSE          0.0235          0.0186 
Godfrey LM test statistics          4.52          3.64 
No. of observations             27             26 
Notes: Dependent variable is the natural logarithm of labour demand (𝑙); ***,**,* indicate that estimates are significantly different from zero at 
the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
 
 
 
 
 
 
 
 
 
 

http://www.statbank.dk/�
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Table C3. Average truck capacity equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of average truck capacity (𝑠𝑡−1)          0.7382*** 

        (0.2072) 
         0.7781*** 
        (0.1763) 

Natural logarithm of fuel price (𝑝𝑓)          0.1448* 
        (0.0783) 

         0.1336* 
        (0.0742) 

Natural logarithm of price index for vehicles and spare parts (𝑝𝑖𝑡)         -0.1460 
        (0.2079) 

        -0.1185 
        (0.2075) 

Natural logarithm of wages (𝑤)          0.1213 
        (0.1535) 

         0.1042 
        (0.1463) 

Constant          1.3083 
        (1.4981) 

         1.0716 
        (1.4513) 

Adjusted R-squared          0.9498          0.9426 
SSE          0.0179          0.0169 
Godfrey LM test statistics          3.09          2.18 
No. of observations             27             26 
Notes: Dependent variable is the natural logarithm of average truck capacity (𝑠); ***,**,* indicate that estimates are significantly different from 
zero at the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
 
Table C4. Average truck age equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of average truck age (ℎ𝑡−1)          0.8504*** 

        (0.1121) 
         0.8273*** 
        (0.0698) 

Natural logarithm of fuel price (𝑝𝑓)         -0.0277 
        (0.1086) 

        -0.0219 
        (0.0891) 

Natural logarithm of price index for vehicles and spare parts (𝑝𝑖𝑡)         -0.0836 
        (0.3187) 

         0.0405 
        (0.2449) 

Natural logarithm of wages (𝑤)          0.0875 
        (0.2099) 

         0.0583 
        (0.1559) 

Constant          0.9324 
        (2.0443) 

         0.3459 
        (1.5417) 

Adjusted R-squared          0.9220          0.9444 
SSE          0.0416          0.0277 
Godfrey LM test statistics          6.81          5.71 
No. of observations             27             26 
Notes: Dependent variable is the natural logarithm of average truck age (ℎ); ***,**,* indicate that estimates are significantly different from zero 
at the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
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Table C5. Truck stock equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of average number of trucks (𝑚𝑡−1)          0.6390*** 

        (0.1683) 
         0.5516*** 
        (0.0968) 

Natural logarithm of fuel price (𝑝𝑓)         -0.0725 
        (0.0475) 

        -0.0659 
        (0.0423) 

Natural logarithm of freight activity (y)          0.0390 
        (0.0934) 

         0.0689 
        (0.0613) 

Natural logarithm of price index for vehicles and spare parts (𝑝𝑖𝑡)         -0.2200 
        (0.1333) 

        -0.2135* 
        (0.1047) 

Natural logarithm of wages (𝑤)          0.1669* 
        (0.0823) 

        0.1484** 
        (0.0646) 

Constant          5.0243** 
        (1.8823) 

         5.6073*** 
        (1.1877) 

Adjusted R-squared          0.7728          0.7733 
SSE          0.0066          0.0061 
Godfrey LM test statistics          15.73          10.93 
No. of observations             27             26 
Notes: Dependent variable is the natural logarithm of average number of trucks (𝑚); ***,**,* indicate that estimates are significantly different 
from zero at the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
 
Table C6. VKT equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of VKT (𝑣𝑡−1)          0.4993** 

        (0.2152) 
          0.5508*** 
         (0.1684) 

Natural logarithm of fuel price (𝑝𝑓)          0.0316 
        (0.1063) 

         -0.0284 
         (0.0946) 

Natural logarithm of freight activity (y)          0.4036* 
        (0.2069) 

          0.5434*** 
         (0.1660) 

Natural logarithm of price index for vehicles and spare parts (𝑝𝑖𝑡)         -0.1992 
        (0.2317) 

         -0.2940 
         (0.2120) 

Natural logarithm of wages (𝑤)          0.0392 
        (0.1528) 

          0.0298 
         (0.1362) 

Constant          1.0346 
        (1.9393) 

         -0.1330 
         (1.6669) 

Adjusted R-squared          0.8188           0.8381 
SSE          0.0221           0.0185 
Godfrey LM test statistics          4.17           1.32 
No. of observations             27              26 
Notes: Dependent variable is the natural logarithm of VKT (𝑣); ***,**,* indicate that estimates are significantly different from zero at the 0.01, 
at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
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Table C7. Freight activity equation 
               [1]               [2] 
 Estimated using OLS Estimated using 3SLS 
Lagged natural logarithm of freight activity (𝑦𝑡−1)          0.1006 

        (0.1413) 
          0.1351 
         (0.1410) 

Natural logarithm of fuel price (𝑝𝑓)         -0.1670* 
        (0.0837) 

         -0.1714* 
         (0.0884) 

Natural logarithm of VKT per litre of consumed fuel (𝑒)          0.3667*** 
        (0.0920) 

          0.3196*** 
         (0.0870) 

Natural logarithm of GDP (𝑔𝑑𝑝)          0.3829* 
        (0.1928) 

          0.4731** 
         (0.1732) 

Natural logarithm of wages (𝑤)          0.1321 
        (0.2091) 

          0.0464 
         (0.1969) 

Natural logarithm of price index for vehicles and spare parts (𝑝𝑖𝑡)          0.3919 
        (0.2377) 

          0.4304* 
         (0.2317) 

Constant          7.3584*** 
        (1.9136) 

          6.8632*** 
         (1.8520) 

Adjusted R-squared          0.9671           0.9618 
SSE          0.0136           0.0137 
Godfrey LM test statistics          0.78           2.08 
No. of observations             27              26 
Notes: Dependent variable is the natural logarithm of freight activity (𝑦); ***,**,* indicate that estimates are significantly different from zero at 
the 0.01, at the 0.05 and the 0.10 level, respectively; standard errors are in parentheses. 
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