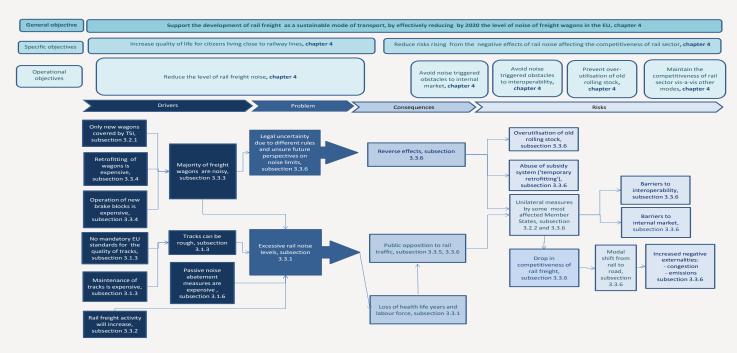
Rail noise reduction – Impact Assessment support study



Headings

- > The problem of rail noise
- > Some possible solutions
- > Analysis
 - > Methods
 - > Data
- > Next steps

The problem of rail noise

How big is the problem?

External costs of freight transport, Euro per 1,000 tkm, EU28

	Road freight	Rail freight	
Accidents	18.0	0.2	
Noise	2.7	1.1	
Climate costs	2.8	0.2	
Pollutants	8.9	1.2	

Some possible solutions – technical solutions

Measure	Avoided source of noise	Impact (local, network	Effect
		wide)	
K-blocks	Rolling noise	Network wide	Up to 8 dB(A) - 10 dB(A)
LL-blocks	Rolling noise	Network wide	7 dB(A) - 10 dB(A)
General grinding of bad	Rolling noise	Local	10 - 12 dB(A) (up to 20 dB(A) at very bad
track			tracks)
Special acoustic grinding	Rolling noise	Local	1 – 4 dB(A) (depending on local rail
			roughness conditions), mostly around 2
			dB(A) attended
Disk brakes	Rolling noise	Network wide	10 dB(A)
Wheel-tuned absorbers	Wheel noise	Network wide	Uncertain
Bogie Shrouds together	Wheel noise	Local	8 - 10 dB(A)
with low height barriers			
Rail dampers	Rail noise	Local	Uncertain
Slab tracks	Rail noise	Local	5 dB(A)
Rail pads	Rail noise	Local	3 - 4 dB(A)
Different measures to	Squeal noise	Local	Up to 20 dB(A) depending on local conditions
lower squeal noise			
Barriers 2 meters high	All sources	Local	5-10 dB(A)
Barriers 3 – 4 meters	All sources	Local	10-15 dB(A)
high			
Housing insulation	All sources	In house only	10 - 30 dB(A)

Policy measures

- > Analysed solution paths
 - Legal measures
 - > TSI requirements
 - Noise ceilings
 - Mandatory track maintenance
 - > Environmental health approach
 - Market measures
 - > Subsidies
 - Noise differentiated track access charges (NDTAC)

Analysis

- > Impacts
 - > Effectiveness
 - Reducing noise (quantitative analysis)
 - > Guarding internal market
 - Guarding interoperability of the rail network
 - > Preventing over-utilization of old wagon stock
 - Guarding competitiveness of rail freight transport (quantitative)
 - > Administrative feasibility and cost
 - Coherence with other EU policies

Methods and data

- > Literature review
 - Costs of measures
 - > Effects of measures
- > Data
 - > Wagon fleet data
 - > Cross price elasticities
 - > Effect data
 - > Cost data

Next steps

- > Early summer, final report delivered to DG MOVE
- > Currently, DG MOVE is completing its impact assessment paper
- > Expected Commission communication on rail noise 2015

The end

Thank you

