Regulation of climate gas emissions from air transport

MORTEN LUND MADSEN, STUD. OF ENVIRONMENTAL PLANNING & JOURNALISM PER HOMANN JESPERSEN, ASSC. PROF., TRANSPORT PLANNING & TRANSPORT POLICY ROSKILDE UNIVERSITY

Aviation and CO_2 -emissions

"Controlling the growing influence of aviation on the climate is probably the largest challenge to be solved in the overall mitigation of climate change."

Houghton (2009: 346)

Growth in aviation - fuel use and RPK (revenue passenger kms)

Aviation in the EU Emission Trading Scheme (ETS)

- CO2-emissions proportional to fuel consumption i.e. a fuel tax is an appropriate regulation
- Does not account for the non- CO₂ emissions (CO₂ accounts only for 60 pct. of the total atmospheric GHG-perturbation from aviation).

Non-CO₂ Greenhouse Gas (GHG) emissions

► Water H₂O

- Greenhouse gas (absorbs infrared radiation)
- Proportional to fuel consumption
- At low altitudes
 - a very small part of the water cycle (evaporation from the sea, rainfall etc.) an insignificant net-contribution to the GHG-effect
- At higher altitudes (upper troposphere, tropopause, stratosphere)
 - A much longer residence time of vapor
 - ► A significant contribution to GHG-effect

Non-CO₂ Greenhouse Gas (GHG) emissions

Nitrogen oxides NO_x

- Emissions consist mainly of NO but is quickly oxidized to NO_2 and other nitrogen oxides
- ► Interacts with atmospheric ozone $O_3 + CH_4$
- Greenhouse gases (absorb infrared radiation)
- Emissions depend on engine and operational conditions of engine
- Not proportional to fuel consumption
- Complex GHG-effect dependent of altitude

Contrails

- Condensates (droplets and ice crystals)
- Formed mainly from external moisture under certain conditions
- ▶ 'Positive' GHG-effect
- Soot & aerosols
 - 'Negative' but small GHG-effect

Metrics of GHG-emission

- Radiative forcing the most accurate way to measure the impacts of greenhouse gases!
 - ► Radiative forcing index
 - Does not account for future
 - A progress report on the previously emitted emissions
- GWP account for the future impact of current released CO₂-emissions.
 - Not suitable for short lived non CO₂ GHG-emissions.
- AGWP and EWF the ratio of sustaining the current RF-impact aviations emissions divided by GWP CO₂

Regulation objectives

- CO₂ emissions during flight are minimized by choosing high cruising altitudes
- \blacktriangleright H₂O- and NO_x-emissions have much higher GHG-effect at high altitudes
- A fuel based economic regulation such as ETS is not an optimal GHGreduction scheme
- Questions
 - Can we improve the regulation scheme to minimize GHG-effects of aviation and further climate friendly technological development in the aviation industry?
 - Does sufficient scientific knowledge exist to make a more precise regulation?
 - Can a simple and fool proof regulation be established?

Radiative forcing and flight altitude

Figure is a prospect for the year 2100

- Average RF 158 mWm⁻²
- If all flight altitudes were reduced by 6000 feet
 - Radiative forcing from CO₂ would increase ~6 mWm⁻² due to increased fuel use
 - Radiative forcing from non-CO₂ emissions would reduce ~48 mWm⁻²
 - Net effect would be a reduction of 42 mWm⁻² corresponding to a ~25% reduction of total radiative forcing
- The negative non-CO₂ effects of increased flight altitude outweigh the positive CO₂ effects by a factor of ~8
- There is an almost linear relationship between flight altitude and the total change in radiative forcing

Source: Frömming et al, 2012

Regulation philosophy

- Fuel tax is an efficient way of regulating CO_2 -emissions
- \triangleright CO₂ accounts for ~60% of GHG-emissions
- Non-CO₂ externalities should be taxed with $\sim 2/3$ of CO₂-emission taxes
- It will not be feasible to tax non-CO₂ externalities based on concrete meteorological conditions
- However, non-CO₂ externalities would be reduced if flight altitudes were to be reduced
- A tax scheme based on aircraft type, flight altitude and kilometers flown - added to the carbon tax – would be based on data already known and recorded
- The tax scheme could both be a regular tax or the revenue could be sent back to the industry e.g. proportional to km flown, passenger kilometers or other parameters – as long as the marginal costs of CO₂ and non-CO₂ emissions are maintained.

An example

- An average commercial aircraft would have an average CO₂emission of x ton per 100 kilometer flown (take-off and landing included). With a price of C €/ton CO₂, the average fuel tax for 100 kilometers would be C*x €
- For flying 100 kilometers in a corridor of average height, an additional tax of 2/3 of C*x € should be levied
- Reducing the flight height 300 feet to the next corridor level would reduce non-CO₂ externalities by around 1%, and the tax should be reduced accordingly

An example – cruising part of a medium haul flight

Relative price with and without non-CO2 taxation Average height with non-CO2 tax = 100

- The non-CO₂ tax 'compensates' for the cost advantage of flying at higher altitudes
- This means that flight corridors will be filled up from below also to save fuel for climbing
- A potential of up to 25% GHG saving

Background data

- Haul ~1000 kms, A320-200 (168 seats), passengers 72% (SASdata)
- 75% of fuel for cruising
- Carbon tax 8% of fuel price (~130 kr./ton CO2)
- Total non-CO₂ tax 2/3 of total carbon tax
- Fuel consumption 1% per 1000 feet (Frömming et al. 2012)
- Non-CO₂ GHG-emissions + 8% per 1000 feet (Frömming et al. 2012)

Conclusions

- A global regulatory regime for the aviation industry is crucial for meeting GHG reduction goals
- Proposed GHG reduction schemes like the inclusion of aviation in the emission trading scheme (ETS) focus on CO₂ emissions
- No emission tax or taxes only based on CO₂ emissions will discourage flight at high altitudes where fuel consumption is lower
- Flight at high altitudes have the highest non-CO₂ GHG emissions. The non-CO₂ emissions have a negative climate effect that much outweighs the obtained CO₂-reduction
- A taxation of non-CO₂ emission can be based on data already available: aircraft type, flight altitude and kilometers flown. This should be added to the carbon tax.
- It is shown that such a tax could greatly reduce climate effect by giving incentives to fill up the flight corridors from below instead o as now from above