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Abstract 
Transportation is rife with uncertainty, e.g., due to sudden disruptions and incomplete knowledge. Properly 
modelling this uncertainty is thus crucial for effective Transport practitioning. Fortunately, Transportation is 
also a rich source of data, from which Machine Learning models can extract useful patterns. This extended 
summary succinctly describes several joint works on Machine Learning methods for handling uncertainty in 
Transportation. In these works, we find that recent technological advances can alleviate the degradation of 
data-driven prediction models under road incidents, for which we offer a dedicated framework. We also 
advise to explicitly model an inherent limitation in Transportation demand observations, for which we offer 
two non-parametric alternatives. For dynamic operation of shared mobility services, we demonstrate the 
benefits of preserving a full uncertainty structure of demand, and we also quantify the relationship 
between predictive quality and subsequent service optimization. 

1. Introduction

Traffic Management Centers and Intelligent Transportation Systems rely on predictive models of short-term 
and long-term traffic. The models are often based on Machine Learning (ML) methods to automatically 
detect patterns in data. For instance, ML is widely used in Intelligent Transportation Systems, real-time 
incident management, autonomous mobility, international freight shipping, Public Transport, and fleet 
management. 

In these and many other examples, uncertainty exists in the modelled phenomenon, whether because of 
incomplete knowledge or innate non-determinism. For example, highly crowded events can disrupt normal 
Public Transport usage, road incidents vary considerably in duration and impact, and inclement weather 
can hinder traffic inconsistently. Transportation data itself can also be noisy, e.g., because of omission, 
limited observability, inaccuracy or inherent bias. In the following works, we address some gaps in research 
on ML methods for Transportation under uncertainty. For brevity, we include only references to the 
summarized works, and note that these contain further references to other related works. 

2. Simulation-based Model Adaptation during Incidents [1]
When an incident happens, the correlation structure between response and explanatory variables changes 
abruptly, in a manner which is unique to the incident characteristics. As such, there are advantages to 
treating incidents separately from other atypical conditions. At first sight, it may seem worthwhile to pre-
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generate sufficiently many incident simulations offline, and train an ML model on them. However, doing so 
is impractical, because every incident involves too many varying parameters. 
 
Nowadays, however, In-Vehicle Monitor Systems (IVMS) give real-time access to incident details, allowing 
for real-time incident simulations that can be used for ad-hoc model training. For this, we propose the QTIP 
framework, as illustrated in Figure 2.1. QTIP adapts Mordinary, a traffic model for ordinary conditions, into 
Mabnormal, an incident-specific model, regardless of specific model form. The adaptation uses data from real-
time simulations, based on IVMS information from the incident, to cover a range of unknown incident 
parameters. 
 

 
We experiment QTIP in different incident scenarios in a simulated environment of the Hillerød Motorway, 
calibrated on data from the Danish Road Directorate. Each ”ground-truth” simulation involves one of three 
road demand levels (low, medium, high) and either 1 or 2 road blocks in one of three locations on the road, 
where each block is positioned in one of three lanes. For stable results, we replicate each scenario 5 times 
by stochastically perturbing the underlying Origin-Destination demand matrix. In all cases, QTIP is not given 
the demand, but only the 1 min average speed on the road, and optionally also the blocks’ exact locations. 
 
For models Mordinary and Mabnormal, we independetly experiment with Linear Regression, Deep Neural 
Networks, and Gaussian Processes. Mordinary is then obtained by training on multiple, incident-free 
simulations for each demand level. For each incident scenario, QTIP generates 100 ad-hoc incident 
simulations and uses their data to train a 2-piece Mabnormal, where the first piece pertains to the first 6 
critical minutes of the incident, and the second piece pertains to the time until the incident is cleared. 
 
Linear Regression turns out to be the best performing model. For this model type, Figure 2.2 shows the 
superior performance of QTIP’s Mabnormal vs. Mordinary, as measured through Rooted Mean Squared Error. On 
average, Mabnormal performs 28.74% better than Mordinary. Our findings thus suggest that through QTIP, the 
long-standing problem of instantaneous model adaptation under incidents becomes more tractable. In 
particular, we find that pre-calibrated simulations can sufficiently account for variability in unknown 
incident parameters, thereby evading the major challenge of online calibration. 
 

3. Modelling Latent Mobility Demand 
Transport service providers rely on proper models of mobility demand, to make decisions coherently with 
user behavior and needs. Such models often use data from past service usage, which is inherently limited 
(”censored”) by available service supply, so that the actual demand is sometimes unknown (”latent”). We 
next study two non-parametric modelling methods for handling such censored data. 
 

3.1 Censored Gaussian Processes [2] 
A well-known, parametric model for censored regression is Tobit, where the latent variable y depends on 
the covariates X linearly with Gaussian noise, and censorship occurs at known thresholds. Previous works 

Figure 2.1: QTIP framework. Figure 2.2: Performance of model obtained through QTIP. 
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extend the Tobit likelihood to Gaussian Processes (GPs): a nonparametric modeling method for learning a 
distribution on functions from X to y. We further extend this method to time-varying and stochastic 
censorship thresholds. For the GP covariance matrix, we use a combination of several kernels (RBF, periodic 
and Matern) and infer their parameters via Expectation Propagation. 
 
We experiment our Censored GP (CGP) methodology in several case studies: (1) a synthetic, sinusoidal 
dataset, where points near the sinusoidal peaks are censored to within 70%-80% of their original value. 
(2) Real-world measurements of acceleration during a motorcycle crash, for which we censored either  
10%, 50% or 90% of the observations to within either 0%-33%, 34%-66%, 67%-100% of their original values. 
(3) Bike rentals and returns from a real-world bike-sharing provider in Copenhagen, where we treat rentals 
as demand, and choose which of them are censored per supply shortages; for            , each 
censored observation is c times its original value. (4) Taxi pickups and dropoffs, where we treat pickups as 
demand, and censor them stochastically per available supply, again using            . 
 
In addition to CGP, we also fit non-censored GP model (NCGP), and a censorship-aware GP model (NCGP-A) 
that first discards of censored observations. We then evaluate all models in terms of Rooted Mean Squared 
Error (RMSE) and Coefficient of Determination (  ). Example results for the taxi case study appear in Figure 
3.1. Overall, the experimental results from all case studies highlight how standard regression models are 
prone to bias under data censorship, whereas CGP can yield consistent predictions even under severe 
censorship. This further supports a key message of our work: it is better to deal with data censorship via 
more knowledgeable models than via common data cleaning techniques. 
 

  
 
 
 

3.2 Censored Quantile Regression Neural Networks [3] 
While Gaussian Processes allow for a flexible, non-parametric fit, they still impose a Gaussian assumption 
on the latent distribution and have somewhat limited scalability. To overcome these limitations, we next 
study Censored Quantile Regression Neural Networks (CQRNN), to estimate the latent distribution while 
accounting for data censorship.  
 
For any      , the  ’th quantile of a Cumulative Distribution Function (CDF) is the smallest real 
number at which the CDF equals  . In Quantile Regression (QR), multiple quantiles of the CDF are modeled, 
thereby allowing to approximate the full distribution. Censored Quantile Regression (CQR) extends on this 
by accounting for censorship thresholds through various techniques, and few CQR works use Neural 
Networks for nonparametric CQR. As far as we know, our work is the first to apply CQRNN to Transport. 
 
As illustrated in Figure 3.2, we construct NNs independently for each 
 , whose values we choose next in the experiments. Throughout the 
experiments, we vary the Hidden layers and the activation function 
of the Aggregate Outputs layer. For training, we also devise a 
dedicated log-likelihood function. 
 
 

Figure 3.1: predictive quality for experiments with taxi data, when evaluating on either the entire test data (left) or only 
non-censored observations (right), where the actual values are known. 

Figure 3.2: CQRNN architecture. 
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Our experiments begin with three commonly used synthetic baseline datasets, for which we use 
               . We show that CQRNN outperforms censorship-unaware QRNN and nonparametric 
CQRNN yields better quantile estimates vs. parametric Tobit. Next, we experiment with two real-world 
datasets: the same bike-sharing data as in the CGP work, and daily rentals of shared Electric Vehicles. For 
these, we use             and measure CQRNN performance for increasingly complex architectures. The 
results suggest that more complex architecture improves CQRNN performance, and demonstrate the 
advantage of modelling a full predictive distribution vs. estimating only several of its moments. 

 
4. Predictive Optimization of Demand-Responsive Public Transport 
Whereas the itineraries of traditional bus services are often pre-fixed, the itineraries of future Public 
Transport (PT) will be dynamically adapted in real-time, e.g., per fluctuations in mobility demand. Our next 
two works deal with using mobility demand predictions for effective PT route optimization. 
 

4.1 Framework for Optimized Routing based on Demand Forecasts [4] 
We first devise and evaluate an online predictive 
optimization framework for dynamic operation of 
shared transit services, as illustrated in Figure 
4.1. On the travel demand side, the framework 
estimates marginal distributions of Origin-
Destination pairs via Quantile Regression and 
joins them via a Gaussian copula. On the supply 
side, the framework uses a linear programming 
formulation to stochastically optimize the service 
per the joint distribution. 
 
                                                                                                                    Figure 4.1: The proposed predictive optimization framework. 
 

Using QR, we preserve a full structure of uncertainty in the demand, which in turn allows for more 
informed optimization of the service. Further, by stochastically constructing prediction-based demand 
scenarios, our optimization method is optimal in expectation. Also, contrary to most existing studies on 
scenario-based optimization, our framework generates the scenarios dynamically in real time. 
 
We experiment the framework in a case study of a hypothetical shuttle service, where mobility demand is 
reflected by people’s movements in the Lyngby campus of the Danish Technical University. These 
movements are reconstructed from actual data on WiFi usage in the campus. On the demand prediction 
side, we experiment with                   and several QR model types: Historical Percentiles, Linear 
QR, Deep QR, and Gradient Boosting QR. We fit these models either independently for each OD pair and  , 
or as multivariate models for multiple OD pairs and  ’s together. We then obtain that multivariate Gradient 
Boosting QR is the best demand prediction model. 
 
On the service optimization side, we devise a linear programming formulation that corresponds to a 
minimum cost flow, as illustrated in Figure 4.2. Given a joint demand distribution, we solve this formulation 
for independent samples from the distribution, and finally pick the most frequent solution as the output of 
the framework. We compare the quality of this output against two conventional optimization strategies – 
median estimates and robust (i.e., worst-case) optimization – and obtain that our framework mostly 
outperforms these point estimation methods. This suggests that route optimization can utilize a full 
structure of demand uncertainty better than just point estimates of this uncertainty. 
 

4.2 Effects of Prediction Inaccuracy on Subsequent Optimization [5] 
Uncertainty in prediction models yields residuals, namely, differences between predictions and actually 
observed values. Although residuals are often assumed to be identically and Normally distributed, they can 
sometimes be non-Gaussian and vary considerably in their central moments. Also, depending on data size 
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and quality, it might also be impractical to fit a model with Gaussian residuals. While multiple methods 
have been devised for detecting deviations from normality, few works study the impact of such deviations 
in the context of predictive Transport optimization. 
 
To address this gap, we conclude with a work on the relationship between accuracy in mobility demand 
predictions and effective operation of demand-responsive PT. We do so using an experimental case study 
on PT trips in Copenhagen, based on actual Rejsekort records, wherein we purposely refraining from using 
any specific prediction models. Instead, we simulate errors in demand predictions by sampling from a 
variety of distributions, and use the inaccurate predictions to simulate and optimize demand-responsive PT 
fleets. For service optimization, we use a formulation applicable to Mobility-on-Demand without assuming 
pre-booking, so that demand is observed through real-time boarding and alighting. 
 

          
Figure 4.3: Stations in prediction accuracy case study.      Figure 4.4: Error distributions for different standard deviations ( ). 
 
In this case study, the observations are hourly Origin-Destination counts between 6 main PT stations, as in 
Figure 4.3. First, we experiment with several error distributions – Gaussian, Uniform, Exponential and 
Weibull – that cover a wide range of central moments, as illustrated in Figure 4.4. We shift all distributions 
to have zero mean and then experiment with different standard deviations. For each distribution, we 
obtain predictions by drawing samples and adding them to the ground truth observations. Finally, for each 
set of demand predictions, we simulate demand-responsive PT with varying no. of buses, bus capacity, and 
percentage of dynamically routed buses. 
 
The results suggest that the optimized fleet performance is mainly affected by the presence of infrequently 
large prediction errors and the skew of the error distribution. In particular, non-Gaussian error distributions 
with negative skew and no bias can yield better fleet optimization vs. a Gaussian error distribution with the 
same standard deviation. For this case study, we also obtain that dynamic routing reduces trip time by at 
least 23% vs. classic, static routing – an estimated yearly gain of 6M DKK in Value of Travel Time. 
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