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Abstract 
Autonomous mobility-on-demand (AMoD) systems represent a rapidly developing mode of transportation 
wherein travel requests are dynamically handled by a coordinated fleet of robotic, self-driving vehicles. Given 
a graph representation of the transportation network - one where, for example, nodes represent areas of 
the city, and edges the connectivity between them - we argue that the AMoD control problem is naturally 
cast as a node-wise decision-making problem. In this paper, we propose a deep reinforcement learning 
framework1 to control the rebalancing of AMoD systems through graph neural networks. Crucially, we 
demonstrate that graph neural networks enable reinforcement learning agents to recover behavior policies 
that are significantly more transferable, generalizable, and scalable than policies learned through other 
approaches. Empirically, we show how the learned policies exhibit promising zero-shot transfer capabilities 
when faced with critical portability tasks such as inter-city generalization, service area expansion, and 
adaptation to potentially complex urban topologies. 

 
1 Code available at: https://github.com/DanieleGammelli/gnn-rl-for-amod 
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Introduction 
Personal urban mobility is currently 
dominated by the increase of private cars for 
fast and anytime point-to-point travel within 
cities. However, this paradigm is currently 
challenged by a variety of impellent factors, 
such as the production of greenhouse gases, 
dependency on oil, and traffic congestion, 
especially in densely populated areas. With the urban population projected to reach 60 percent of the world 
population by 2030 [1], private cars are widely recognized as unsustainable for the future of personal urban 
mobility. In light of this, cities face the 
challenge of devising services and 
infrastructure that can sustainably match the 
growing mobility needs and reduce 
environmental harm.  
 
In order to address this problem, any 
potential solution will likely need to work towards the convergence of a variety of emerging technologies [2]. 
To this regard, one of the most promising strategies is the concept of mobility-on-demand (MoD), in which 
customers typically request a one-way ride from their origin to a destination and are served by a shared 
vehicle belonging to a larger fleet. One of the major limitations of the MoD paradigm lies in the spatio-
temporal nature of urban mobility, such that trip origins and destinations are asymmetrically distributed 
(e.g., commuting into a downtown in the morning and vice-versa in the evening), making the overall system 
imbalanced and sensitive to disturbances. Related to this problem, the advancement in autonomous driving 
technologies offers a potential solution. Specifically, autonomous driving could enable an MoD operator to 
coordinate vehicles in an automated and centralized manner, thus eliminating the need for manual 
intervention from a human driver. However, controlling AMoD systems potentially entails the routing of 
thousands of robotic vehicles within complex transportation networks, thus effectively making the AMoD 
control problem an open challenge. 
 
In this work, we propose the use of graph neural networks to centrally control AMoD systems. In particular, 
given a graph representation of the transportation network - a graph where nodes represent areas of the 
city and edges the connectivity between them [3] - we learn a node-wise rebalancing policy through deep 
reinforcement learning. We argue that graph neural networks exhibit a number of desirable properties and 
propose an actor-critic formulation as a general approach to learn proactive, scalable, and transferable 
rebalancing policies.   
 
Methodology 
In this section, we propose a control framework to learn effective AMoD rebalancing policies from 
experience. Towards this aim, we consider a transportation network represented by a complete graph 𝒢𝒢 =
(𝒱𝒱,ℰ) with 𝑀𝑀 single-occupancy vehicles, where 𝒱𝒱 represents the set of stations (e.g., pick-up or drop-off 
locations) and ℰ represents the shortest paths connecting the stations. Let us denote 𝑁𝑁𝑣𝑣 = |𝒱𝒱| as the 
number of stations. The time horizon is discretized into a set of discrete intervals 𝒯𝒯 = {1,2,⋯ ,𝑇𝑇} of a given 
length Δ𝑇𝑇. The travel time for edge (𝑖𝑖, 𝑗𝑗) ∈ ℰ is defined as the number of time steps it takes a vehicle to 
travel along the shortest path between station 𝑖𝑖 and station 𝑗𝑗, denoted as an integer 𝜏𝜏𝑖𝑖𝑖𝑖 ∈ ℤ+. Further 
denote 𝑐𝑐𝑖𝑖𝑖𝑖 as the cost of traveling through an edge (𝑖𝑖, 𝑗𝑗) ∈ ℰ, which can be calculated as a function of travel 
time 𝜏𝜏𝑖𝑖𝑖𝑖. At each time step, customers arrive at their origin stations and wait for vehicles to transport them 
to their desired destinations. The trip traveling from station 𝑖𝑖 ∈ 𝒱𝒱 to station 𝑗𝑗 ∈ 𝒱𝒱 at time step 𝑡𝑡 is 
characterized by demand 𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡  and price 𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡 . Consequently, passengers departing from origin station 𝑖𝑖 at 

Figure 1. This paper proposes a framework to control AMoD systems 
by learning a shared rebalancing rule across all areas (nodes) in the 
transportation network. Through the use of graph convolutions, the 
proposed architecture aggregates information coming from both local 
information (in red), as well as information about neighboring areas (in 
blue), to learn an updated representation (in green) for downstream 
rebalancing tasks. 
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time 𝑡𝑡 will arrive at the destination station 𝑗𝑗 at time 𝑡𝑡 + 𝜏𝜏𝑖𝑖𝑖𝑖. The AMoD operator coordinates a fleet of taxi-
like fully-autonomous vehicles to serve the transportation demand. The operator matches passengers to 
vehicles, and the matched vehicles will deliver passengers to their destinations. Let us denote 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡  as 
the passenger flow, i.e. the number of passengers traveling from station 𝑖𝑖 to station 𝑗𝑗 at time step 𝑡𝑡 that 
are successfully matched with a vehicle. Passengers not matched with any vehicles will leave the system. 
For vehicles not matched with any passengers, the operator will either have them stay at the same station 
or rebalance them to other stations. Let us denote 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡  as the rebalancing flow, i.e., the number of vehicles 
rebalancing from station 𝑖𝑖 to station 𝑗𝑗 at time step 𝑡𝑡. 

A Three-Step Framework. We adopt a three-step decision-making framework similar to [?] to control an 
AMoD fleet: (1) deriving passenger flow by solving a matching problem, (2) computing the desired 
distribution of idle vehicles at the current time step by using the learned policy 𝜋𝜋𝜃𝜃(𝐚𝐚𝑡𝑡 ∣ 𝐬𝐬𝑡𝑡), (3) converting 
the desired distribution to rebalancing flow by solving a minimal rebalancing-cost problem. Notice that in 
the three-step procedure, we have an action at each node as opposed to along each edge (as in the 
majority of literature). In other words, we reduce the dimension of the action space of the AMoD 
rebalancing MDP to 𝑁𝑁𝑣𝑣 (compared to 𝑁𝑁𝑣𝑣2 in edge-based approaches), and thus significantly improve 
scalability of training and implementation. 

We now explain in more detail the three-step decision framework that the AMoD operator employs at each 
time step 𝑡𝑡. The first step is passenger matching, wherein the following matching problem is solved to 
derive passenger flows �𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 �𝑖𝑖,𝑖𝑖∈𝒱𝒱: 

max
�𝑥𝑥𝑖𝑖𝑖𝑖

𝑡𝑡 �
𝑖𝑖,𝑖𝑖∈𝒱𝒱

  �  
𝑖𝑖,𝑖𝑖∈𝒱𝒱

 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 �𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 �                  (1𝑎𝑎)

 s.t. 0 ≤ 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑖𝑖, 𝑗𝑗 ∈ 𝒱𝒱,            (1b)
 

where the objective function Eq.(1a) represents the total profit of passenger assignment calculated as the 
difference between revenue and cost, and the constraint Eq.(1b) ensures that the passenger flow is non-
negative and does not exceed the demand. Notice that since the constraint matrix is totally unimodular, 
the resulting passenger flows are positive integers, i.e., 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 ∈ ℤ+if 𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡 ∈ ℤ+,∀𝑖𝑖, 𝑗𝑗 ∈ 𝒱𝒱. 

The second step entails determining the desired idle vehicle distribution 𝐚𝐚reb𝑡𝑡 = �𝐚𝐚reb,𝑖𝑖
𝑡𝑡 �

𝑖𝑖∈𝒱𝒱
, where 𝐚𝐚reb,𝑖𝑖

𝑡𝑡 ∈
[0,1] defines the percentage of currently idle vehicles to be rebalanced towards station 𝑖𝑖 in time step 𝑡𝑡, and 
∑𝑖𝑖∈𝒱𝒱 𝐚𝐚reb ,𝑖𝑖

𝑡𝑡 = 1. With desired distribution 𝐚𝐚reb 
𝑡𝑡 , denote �̂�𝑚𝑖𝑖

𝑡𝑡 = �𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖
𝑡𝑡 ∑𝑖𝑖∈𝒱𝒱 𝑚𝑚𝑖𝑖

𝑡𝑡� as the number of desired 
vehicles, where 𝑚𝑚𝑖𝑖

𝑡𝑡  represents the actual number of idle vehicles in region 𝑖𝑖 at time step 𝑡𝑡. Here, the floor 
function ⌊⋅⌋ is used to ensure that the desired number of vehicles is integer and always available 
�∑𝑖𝑖∈𝒱𝒱 �̂�𝑚𝑖𝑖

𝑡𝑡 ≤ ∑𝑖𝑖∈𝒱𝒱 𝑚𝑚𝑖𝑖
𝑡𝑡�. Reinforcement learning will thus be used to choose meaningful desired distributions 

𝐚𝐚reb 
𝑡𝑡  through a learned policy 𝜋𝜋𝜃𝜃(𝐚𝐚𝑡𝑡 ∣ 𝐬𝐬𝑡𝑡) 

The third step entails rebalancing, wherein a minimal rebalancing-cost problem is solved to derive 
rebalancing flows �𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 �(𝑖𝑖,𝑖𝑖)∈ℰ

: 

 min
�𝑦𝑦𝑖𝑖𝑖𝑖

𝑡𝑡 �
(𝑖𝑖,𝑖𝑖)∈ℰ

∈ℤ+
|ℰ|
  �  
(𝑖𝑖,𝑖𝑖)∈ℰ

 𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡                                  (2𝑎𝑎)

 s.t. � 
𝑖𝑖≠𝑖𝑖

 �𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 � + 𝑚𝑚𝑖𝑖
𝑡𝑡 ≥ �̂�𝑚𝑖𝑖

𝑡𝑡 , 𝑖𝑖 ∈ 𝒱𝒱,          (2b)

 � 
𝑖𝑖≠𝑖𝑖

 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑚𝑚𝑖𝑖
𝑡𝑡 , 𝑖𝑖 ∈ 𝒱𝒱,                                          (2c)
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where the objective function Eq.(2a) represents the rebalancing cost, constraint Eq.(2b) ensures that the 
resulting number of vehicles (the left-hand size) is close to the desired number of vehicles (the right-hand 
side), and Eq. (2c) limits the rebalancing flows from a region to the vehicles available in that region. 

 
Experiments and Discussion 
In this section, we present simulation results that demonstrate the performance of our proposed approach. 
1 Specifically, the goal of our experiments is to answer the following questions: (1) Can the proposed A2C-
GNN learn effective rebalancing strategies on real-world urban mobility scenarios? (2) What are the  
generalization capabilities of a behavior policy learned through our approach? (3) Computationally, what are 
the advantages of GNN-based RL approaches compared to traditional control-based strategies? 

These rebalancing algorithms are evaluated using two case studies inspired by New York City, USA, and the 
city of Chengdu, China, whereby we study a hypothetical deployment of AMoD systems to serve the morning 
commute demand in popular areas of Manhattan (8 a.m. -10 a.m., with a size of 4 km×4 km) and Chengdu 
( 7 a.m. -10 a.m., with a size of 10 km×10 km), respectively. In our experiments, we care about a set of Key 
Performance Indicators not included within the reward function. Specifically, we also monitor (i) Served 
demand: defined as the total number of trips satisfied by the AMoD control strategy, (ii) Rebalancing cost: 
defined as the overall cost induced on the system by the rebalancing policy, and (iii) Percentage deviation 
from an oracle MPC (Model Predictive Control) performance, having oracle information of future system 
states (%Dev. MPC). 

Chengdu and New York Cases. Results in Tables 1 and 2 show that A2C-GNN can learn rebalancing policies 
able to achieve close-to-optimal system performance on both tasks. Specifically, A2C-GNN's performance is 
only 2.2% (Chengdu) and 1.6% (New York) away from the oracle performance. Interestingly, A2C-GNN is 
able to exploit its learned shared local filter to achieve more than 65% (Chengdu) and 36% (New York) cost 
savings in its rebalancing trips when compared to learning-based approaches based on different neural 
architectures. Moreover, by monitoring the number of customers served, we notice how A2C-GNN learns 
rebalancing policies able to proactively select more profitable trips. Specifically, in Table 1, results show that 
A 2C-GNN is able to achieve a 14% increase in profit (i.e., reward) compared to the second-best non-oracle 
approach (A2C-CNN), despite having the lowest number of customers served across all methods. 

 

Computational analysis. We study the computational cost of A2C-GNN compared to MPC-based solutions. 
As shown in Fig. 2 (right), we compare the time necessary for both approaches to compute a single 
rebalancing decision. Specifically, we do so across varying dimensions of the underlying transportation 
network, ranging from 16 up until 400 stations. The results show that, once trained, learning-based 
approaches allow for fast computation of rebalancing policies by forward-propagation of the current system 
state through the learned policy 𝜋𝜋𝜃𝜃(𝐚𝐚𝑡𝑡 ∣ 𝐬𝐬𝑡𝑡). Most importantly, A2C-GNN exhibits computational complexity 
linear in the number of nodes and graph connectivity, as opposed to control-based approaches which scale 
super-linearly in the number of edges [5]. 
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This work addresses the problem of recovering effective rebalancing strategies for AMoD systems by 
proposing graph neural networks as a general approach to parametrize policy-based reinforcement learning 
agents. We introduce an actor-critic algorithm where both policy and value function estimator make use of 
graph convolutions to define an agent capable of dealing with structured transportation networks. Our 
experiments focus on real-world case studies and show how the proposed architecture is able to achieve 
close-to-optimal performance on a variety of scenarios. Crucially, we show how the relational inductive 
biases introduced by graph neural networks allow reinforcement learning agents to recover highly flexible, 
generalizable and scalable behavior policies. In future work, we plan to investigate increasing the complexity 
and stochasticity in the system dynamics, such as considering a mixed fleet of autonomous and human driven 
vehicles. Given their ability to learn about the system dynamics through interaction with an environment, we 
believe reinforcement learning approaches to be well suited for challenging, stochastic environments as the 
ones described by complex human-robot interactions. 
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Figure 2: Left: System performance (Percentage Deviation policy, and (iii) Percentage deviation from an oracle MPC from 
MPC-standard) for agents trained either on a single (Model Predictive Control) performance, having oracle granularity 
(4×4) or across granularities (4×4-10×10), information of future system states (%Dev. MPC). Right: Comparison of 
computation times between A2CGNN and MPC-standard. 
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