
A methodology for inexpensive GPS data storage and
analysis

Tomas Levin
Transportation research

SINTEF technology and society
Trondheim, NORWAY
Tomas.Levin@sintef.no

Abstract— The increase in the use of tenders in Norwegian
transportation research is forcing the research community to
think in new ways. This paper looks into using open source
software and consumer grade equipment for scientific
purposes. The use of consumer grade data logger and open
source hardware is a viable alternative. This paper documents
the methods and the tools used for three research projects, 2
are close to finishing and one has just started.

Vehicle speed and positional data was collected with
inexpensive data loggers and data was stored and analyzed
with open source tools. The tools proved to be more powerful,
but they do not offer the same graphical user interfaces. The
main way to analyze data is through the use of standard SQL.
Both average speed calculations using a road network ana
driver behavior analysis can be carried out we few lines of
code for large amounts of data.

GPS; data storage, open source; map matching (key words)

I. INTRODUCTION
In the development of transport models that have a supply

side driving speeds are a key data to use for verification. From
an emission perspective there has also been developed average
speed emission function. The challenging part of the average
speed emission functions is the fact that emissions have a near
exponential growth in the lower speed region. Figure 1 shows
an example of a EURO 4 34-40 ton truck fuel consumption. It
is quite clear that if the wrong speed is used for emission
calculations the error could be severe. To get as accurate
emission estimates and good supply side transport models it is
imperative to get good speed data for a city or region.

 The traditional collection of speed data has been through
the use of a few floating vehicle driven for registration
purposes and manual calculation of driving speed have been
conducted. In this paper we are suggesting to use GPS data
collected from a pool of vehicles without specified routes to
collect travel time data. Also due to the Norwegian Public
Roads Administrations use of tenders for commissioned
research one has to look at cost effective ways of collecting
data and processing data. Thus a viable option for this project
was to use open source software.

Figure 1 Truck 34-40 tons EURO IV fuel consumption

The methodology described in this paper has been used in 3
research projects: The Green Freight Transport Project, The
speed model for commercial vehicles project and is to be used
in the Green Activety Zones project.

II. DATA COLLECTION
Professional GPS tracking units for logging data have been on
the market for quite a while. What is new is the amount of low
cost consumer grade GPS units with data logging capabilities
that are on the market. Several units where tested, the cheapest
units use the MTK-II chipset with 4 MB of data storage. This
allows for storage of about 200k data points. 200k data points
gives you approximately 55 hours of logging time at 1Hz. Our
plan was to leave loggers in vehicles for an extended time
period, 2-3 months at the time. Thus we needed loggers that
where capable of storing data in the gigabyte magnitude. This
could be achieved by the use of external logging units such as
a phone running the Windows Mobile platform.

Low cost non differential GPS units have been proven to give
good accounts of speed(Keskin and Say, 2006, Witte and
Wilson, 2004).

Trafikdage på Aalborg Universitet 2010 ISSN 1603-9696 1

lilli
Line

A. Windows mobile prototype
The Windows Mobile platform was chosen because an
interpreter for the Python programming language has been
developed and is freely available. Python’s genuine advantage
is the amount of libraries that are shipped with the interpreter.
It only takes around 400 lines of code to create an user
interface, GPS logging and a FTP (File Transport Protocol)
application for collecting, storing and transferring data when
in the vicinity of known wireless networks. The developed
application also collected data from the vehicles ODB-II
connector via a Bluetooth OBD connector based on the ELM
327 chip. The application could run on any Windows Mobile
device of windows pocket pc greater then version 5. The only
requirement would be that the unit had to have Wi-Fi and
GPS. The GPS could be an external Bluetooth device or
internal.

B. First test of devices
Two Windows Mobile devices where tested by a local truck
operator. The problem turned out to be the interaction with the
drivers. In order to get Bluetooth setup correctly the units had
to be started in a specific sequence. And the startup sequence
took some time, about one minute. Then the users had to click
on the device to start the recording. The startup procedure
turned out to be too much hassle for the drivers, so that they
quickly stopped using the loggers. After talking with the truck
operators it was agreed to try with black box units. A set of
black box units where developed, they lacked the ability to
transfer data when in vicinity of known Wi-Fi zones. The
data-loggers stored data to 2 gigabyte SD-cards. Thus the SD
card could quickly be extracted from the logger unit and
replaced with a new empty card. The units were placed inside
the vehicle with the antenna on top of the dashboard.

1) Using standards
To ensure compatibility between loggers and possible
different logging platforms all speed and position data was
stored as standard NMEA sentence. Only 2 sentences where
needed, the GPRMC and the GPGGA sentences. The benefit
of using the NMEA standard is that it is one that is supported
bye most GPS units. And if the standard is not used NMEA
sentences could be constructed from available data. Another
reason for storing the data in the NMEA format is that many
applications are able to read and display NMEA data.

Using the NMEA standard had the benefit of separating the
logging from the analysis process. Basically any logging
equipment could be used as long as it returned data in the
NMEA format. NMEA is a proprietary standard is controlled
by National Marine Electronics Association as sells for around
$325. But most of the application level has been reverse
engineered, a good source of documentation is found in the
appendix of (UBLOX, 2006).

2) Test of device data quality
To test the data quality of the cheap GPS devices a vehicle that
has a professional 100 Hz GPS unit was used as a reference.

The cheep GPS units where placed inside the card while the
100Hz GPS had a roof mounted antenna. The effect of placing
the GPS units inside the vehicles is that sky is not visible in
the opposite direction of driving. Figure 2 shows the
placement of the GPS units on the test vehicle. The expensive
GPS unit is designated as VBOX, while the cheap GPS logger
units where designated as RTCU.

Figure 2 Placement of antennas on test vehicle

A test route was created; the loop was run two times. Two
types of test where conducted, dynamic test when the vehicle
was in motion and a static test when the vehicle was parked in
an urban setting. The analysis later reviled that the cheap GPS
units had a data loss of 10%. This was later traced to a
programming bug.

Figure 3 Map of GPS testroute (source: Statens Kartverk)

Table 1 Data points in each test

Test name
Vbox

Data points
RTCU #2

RTCU #6

D1 – dynamic test 1 1571 1407 1418
D2 – dynamic test 2 1656 1456 1480
S1 – static test 1 1201 1081 1079

1x VBOX

2 x RTCU

Trafikdage på Aalborg Universitet 2010 ISSN 1603-9696 2

lilli
Line

Figure 4 Scatter plott of GPS speed of VBOX versus RTCU units

A simple regression analysis gave the following results:
RTCU 2 = 0,261 + 0,994 Vbox
R-Sq = 99,5%

RTCU 6 = 0,106 + 0,997 Vbox
R-Sq = 99,4%

There are some large discrepancies in Figure 3, these
discrepancies where found under a railway bridge in dynamic
test 2. It seems that the cheaper units have some sort of
smoothing algorithms that filtered out erroneous data under
the bridge. The more expensive unit seemed to report
unfiltered data.

Figure 5 Static test of GPS positional stability

A static test was conducted to check positional quality in an
unban setting, in this test the view to the north east is blocked
by buildings and the vehicle is facing the west. Her we can
clearly see that the more expensive unit that has an antenna
placed on the roof is more stable (the black marks).While the
two cheaper units with the antennas placed inside the vehicle
have a lot more positional drift.

From this simple test is was believed that the data collected
from the cheap GPS units was accurate enough for our

analysis of average speed on short road links. Average load
link length was about 200 meters.

III. SOFTWARE FOR STORING GPS DATA
A total of 10 data loggers where commissioned and these
would log data from truck running in semi fixed routes. We
expected a data volume in excess of 10 million data points. It
turned out that we recorded nearly 6 gigabytes of data from
these trucks. This was a bit less than expected and was due to
the fact that some drivers unplugged the GPS units for reasons
unknown to us.

Our plan for analysis of the data relied on the use of GIS
techniques, map matching and linear referencing thus we
needed to store the data in a georeferenced format. For
analysis after the GIS operations we needed database
capabilities and data export functionality. The PostgreSQL
database was chosen for storing the GPS data. This was due to
the fact that it is open source, it can handle extremely large
data tables(32 terrabyte) and finaly it has a opensource GIS
extension called PostGIS. The PostgreSQLdatabase runs on
several operating systems including the windows operating
system. But due to the large amount of data we expected a 64
bit FreeBSD server with 8 GB of memory was chosen. The
advantage of this was that we could use a 64 bit version of
PostgreSQL that could utilize more than 4GB of memory. The
hardware was a AMD x4 Phenom processor running on 3.4
MHz, an el-cheapo motherboard stuck in a rack case with 2
mirrored 10k rpm disks for database storage. The cost of the
hardware was about €1000. The FreeBSD operating system is
an open source UNIX variety available free of charge. The
benefit of a FreeBSD system compared to a Linux system is
that the kernel, user land and and applications are managed by
the FreeBSD development team. This should theoretically give
a more stable system. Current uptime of system is approaching
115 days. The server has not been rebooted since installation.

Both FreeBSD and PostgreSQL have been around for a long
time and have developed a quite large user community. In
praxis this means that you will quickly find solutions so
problems encountered simply by Googling error codes or more
general issues. The PostGIS spatial extension to the
PostgreSQL is a relative newcomer to the scene. PostGIS is
developed and maintained by a Canadian company called
Refraction and is also available as open source and free of
charge. The software package is built around open standards
and has quite good documentation.

A. Duality of GIS
When speaking of GIS people first and for most think of
desktop GIS applications that can create nice maps and
graphically analyze data. But users can also interact with the
GIS systems at programmatic level. Suppliers of GIS tool have
for a long time given users the possibility to access, manage
and manipulate data through custom API’s (Application
Programming Interface). Thus if you are a proficient
programmer you should be able to use both modes.

806040200

80

60

40

20

0

806040200

80

60

40

20

0

RTCU 2; D1

Vbox

RTCU 2; D2

RTCU 6; D1 RTCU 6; D2

Scatterplot of RTCU 2 and RTCU 6 vs Vbox

Speed are in km/h, Vbox speed on X axiz and RTCU 2 and RTCU 6 on Y axis

Trafikdage på Aalborg Universitet 2010 ISSN 1603-9696 3

lilli
Line

PostGIS does not offer an API in the classical sense, it rather
integrates with the database and becomes an extension to the
SQL database language for relational databases. The effect of
this is that any supported GIS operation can be used trough the
use of standard SQL statements. The combo of PostgreSQL
and PostGIS does not offer a graphical interface. For this the
user has to use a desktop GIS client. There are some graphical
clients on the market that offer direct connection to the
PostgreSQL database such as UDig and QGIS. ESRI’s
desktop systems can also connect to the PostGIS database if
one buys an substantial database extension, ARCSDE, or if
third party software like zigGIS. For our projects Qgis was
used for graphical inspection and digitization of new features
while all the rest of the work was done from the command-line
in SQL.

The setup of our system makes little usage of the duality of
GIS and focuses heavily on moving tasks that used to be done
graphically over to the SQL language. The benefit of this is
that the user will create a script file that is the recipie of the
whole GIS operation. If new data is added it is only a question
of running the script to create new result data. The script for
importing 10 million + data records and matching them to the
road network, error control of data and grouping to a suitable
export table is 894 lines long including code to create the
database tables and comments. Running the script on the
server described earlier takes 6 hours to complete. On the
ESRI platform and with a 3GHz computer with 4GB of
memory and windows XP it took 5½ day to complete just the
map matching. The extreme difference in execution speed is
believed to be linked the fact that ESRI has very general
interfaces to functions while in PostGIS the user uses just the
parts needed.

B. Writing specialized functions
To extract and transform the GPS NMEA files into database
tables and split files into journeys. A journey is defined as a
sequence of data points where the speed is over 3 km/h, but if
the speed drops under 3km/h for s short period (180 seconds)
the data sequence is not split into different trips. The
PostgreSQL database allows for incorporating different
programming languages when writing creating functions.
Functions in PostgreSQL are created with the use of SQL, thus
the conversion code that was written in Python for the ESRI
Geoprocessor could be included by simply removing the
Geoprocessor specific commands. The code sample below
shows the famous Hello World program written and executed
as SQL.

PostgreSQL’s ability to include other programming languages
meant that we could reuse code that was written for the ESRI
Geoprocessor with very little porting effort. It also reduced the
amount of programming languages the user needs to be
proficient in. It is sufficient to know Python and SQL.

The final point with PostgreSQL is that it comes with standard
ODBC driver for Windows. Thus data tables linked to
Windows applications with ease. In our case results from the
analysis was imported into statistical analysis software like
Minitab and SPSS.

IV. MAPMATCHING AND MITIGATION OF ERRORS
There exist quite a few map matching algorithms for real time
mapping of GPS positions(Quddus et al., 2007). Some of these
are quite complex and when map or positional accuracy
algorithms can get quite complex(White et al., 2000). In this
paper we will be focusing on developing methodology for
mapping GPS data to the road work in a simple, but powerful
fashion. The idea is not to remove the errors in the map
matching process, but to find ways to mitigate erroneous
matchings.

A key point in our setup of the system is that it should be able
to collect data in a loose fashion without definition of specific
routes. The map matching routine is extremely simple, it is
based on distance to closest road and the GPS data is snapped
to this road. This approach will give erroneous snapping of
points to roads nearby, especially at intersections.

It is here were we apply the mitigation approach. The
parameter that we are looking for is the average speed on the
link. The average could be expressed as an average of the
instantaneous speed observations or as distance traveled
divided by time used.

 𝑉� =
∑𝑣
𝑛

 Equation 1

 𝑉� =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑡𝑖𝑚𝑒

 Equation 2

Equation 1 is more sensitive to errors in map matching then
Equation 2. By using the second equation intermediate points
on a road link are of less importance, time and distance
between the entry and exit point on the link are the important
factors. As seen from the registration test data static
positioning is likely to lead to increased erroneous matching at
intersections where the vehicle is traveling at low speed or
standing still. The GPS units also seldom report a speed of 0
when standing still, this could lead to a higher than real
average speed. But the real selling point for using Equation 2 is
that the extra data needed for the speed calculation, distance
traveled, can be used for mitigation. Figure 5 shows a sketch
of the map matching routine. The map matching algorithm is
as follows:

CREATE FUNCTION HelloWorld ()
 RETURNS text
AS $$
 # PL/Python function body
 return “Hello World”
$$ LANGUAGE plpythonu;
SELECT HelloWorld ();

Trafikdage på Aalborg Universitet 2010 ISSN 1603-9696 4

lilli
Line

1. Split GPS data into trips, a trip is a sequence of
observations with speeds over 3km/h including shorts
stops under 180 seconds.

2. Find closest road link to GPS point.
3. Calculate linear reference of GPS point.
4. Calculate time and road link distance between first

and last GPS points on road link for each trip.
5. Calculate GPS vector and road link vector to find

direction of travel, along or against digitized line
direction.

6. Percentage of distance traveled on road link, the
distance between the first and last GPS point and
calculate percentage of road link.

Figure 6 Sketch of map matching

A. Loose data collection scheme
The idea behind having a loose data collection scheme is to
collect large amounts of data and drop data that is believed to
be erroneous. The map matching algorithm generates a table
of distance used for average speed calculation and distance of
road link. Data are dropped if the average speed is calculated
for less than 75% of the link length. There is still a problem if
the link length is very short. In this project the standard road
segmentation was used. Thus we opted to remove links that
were less than 200 meters as we were primarily interested in
long-haul trucking operations.

One challenge in urban areas is to record driving speeds on
different road links or longer road segments. The power of the
map matching algorithm is that it runs purely in SQL on the
server side. The map matching routine is very simple and
robust, it is not as advanced as the routines described in
(Quddus et al., 2007). But for long-haul operations the

routines seem to give quite good results, of a set of 8,4 million
points 7,8 millions where given road a road reference,
direction of travel and road gradient. For the Green Freight
dataset average speed was calculated based on 3,0 million
observations left. The mitigation process removed 117651
erroneous data points, the rest were removed because we only
wanted to study roads typical to long-haul rural trucking. If the
trips in urban areas have been included this number would
probably have been much higher.

Table 2 and Figure 6 show results form an analysis of driving
speeds for long-haul trucking operations in rural areas
compared with the speed limit.

Figure 7 Box plot of driving speeds for long-haul trucking
operations in rural areas

Table 2 Driving speeds for long-haul trucking operations in rural
areas

Speed
limit

Mean observed
speed

Standard
Deviation

95% CI

50 57,8 11,9 57,4 - 58,2

60 66,4 11,2 66,2 – 66,6

70 74,6 9,3 74.5 – 74,8

80 77,4 11,4 77,3 – 77,5

90 85,1 6,48 85,0 – 85,2

100 86,6 8,49 86.3 – 86,9

The statistical analysis was performed on a windows pc and
the data was accessed through a standard ODBC database
driver and processed in a standard statistical package, in this
case R1

.

B. Further analysis of driving behavior
Unlike spreadsheets the database has no notation of the rows
before or after the row that it is currently processing. But in
the ISO SQL:2003 standard a window function appears. In
laymen’s terms this feature allows the database to access rows
before or after the current row. PostgreSQL is the only open
source database to include this feature at present. The window

1 http://www.r-project.org/

N

N+1

N+2

Meters start

M
eters end

Roa
d d

ire
cti

on

GPS di
rec

tio
n

N+3

N+4

N+5

N+6

N+7

N+8

N+9

N
+10

N
+11

N
+12

Dire
cti

on
 of

 di
git

iza
tio

n

Trafikdage på Aalborg Universitet 2010 ISSN 1603-9696 5

lilli
Line

function appeared in version 8.4 of PostgreSQL. The window
function really shines when it comes to looking at driver
behavior.

A simplistic way of calculating accelerations form GPS data is
to divide the speed difference between two points by the time
between the two points. As part of the Green Freight project
one wanted to look at driving behavior in relation emissions.
One way to do this is to look at RPA which is believed to be
correlated to driver emissions(Ericsson, 2001). RPA is defined
in Equation 1. T is the length of the micro cycle, vi is the
instantaneous speed, a+i is the instantaneous positive
acceleration and x is the distance of the micro cycle.

 𝑅𝑃𝐴 =
∫ (𝑣𝑖 ∗ 𝑎𝑖+)𝑑𝑡𝑇
0

𝑥

Equation 3

Using the window function in PostgreSQL made it easy to
generate RPA measures for every micro cycle found in the
GPS data. A total of 15258 driving cycles where found in our
data. This data was then compared to the RPA of the micro
cycles found in the ARTEMIS project.

Figure 8 Comparison of RPA for heavyduty vehicles, observed
and ARTEMIS

Figure 7 shows a comparison of the RPA for the long-haul
heavy duty vehicles we observed and the RPA for heavy duty
vehicles found in the ARTEMIS application(Keller et al.,
2007). Each micro cycle was grouped by its average integral
speed. The RPA analysis seems to indicate that RPA found in
observed micro cycles is comparable in terms of scale and
change as a function of average speed.

Two SQL statements of 35 and 23 lines were required to
produce a table with micro cycles, average speed RPA and

percent of time accelerating, decelerating and cruising. The
database was created with the same SQL code as for the speed
studies.

V. GPS ARTIFACTS
When looking at a speed/acceleration plot for the whole
dataset we discovered something that could best be described
as a GPS artifact. Figure 8 shows a dot plot of speed and
acceleration. There are extremely few points with low speed
and high accelerations, but with over 7 million data points
there should probably have been a few faulty registrations a
low speeds, especially since this plot includes driving in urban
areas. There seems to be a line where data is cut off, it is a
quite clear straight line. Looking at the documentation for the
cheap GPS receivers give few clues to why this is happening.
But the fact sheet of the GPS chipset gave us a clue; the GPS
data is post processed before sent to the user. And according to
the fact sheet: “TheANTARIS4GPSengine inside offers
outstanding navigation performance in the most
challengingmetropolitan areas(UBLOX, 2006)” The GPS unit
is also said to run at 4Hz, but only reported data at
1Hz. It is not mentioned if the unit averages 4Hz to 1Hz to get
better positional estimates.

Figure 9 GPS speed and acceleration artifact

This discovery sparked of a test of other GPS chipsets, mainly
a cheap receiver with the MTK II (Media Tek Inc) chipset.
The Holux M-1000 that was used in the initial prototyping
runs at 1Hz, but again the chipset documentation indicated
5Hz. The update rate of the Holux was successfully changed
to 5Hz with the use of a small application from Media Tek Inc
called GPS Mini2

2
www.sparkfun.com/datasheets/GPS/MiniGPS_1.32.zip

 written. The track from a device running at

Trafikdage på Aalborg Universitet 2010 ISSN 1603-9696 6

lilli
Line

1Hz seems more stable then the track from a 5Hz model. To
us this indicated that when external reporting is set to 1Hz
there could some sort of averaging going on within the unit.
No further testing at 5Hz, but we had found indications that
5Hz could be achieved with inexpensive units.

VI. DISCUSSION
As a response to the Norwegian Public Roads Administration
to cut research cost by the wide spread use of tenders for
research project on is forced to look at ways of cutting cost.
One way to do this is to move away from costly registration
schemes and use of expensive software. This paper has looked
at inexpensive ways of collecting data from long-haul trucking
by the use of inexpensive GPS units and open source software
for storage and analysis.

Using cheap over the counter GPS-logging units seems to give
good results. As the miniature test of the inexpensive GPS
units compared to the expensive professional units show quite
comparable results. But the tests also proved that there was a
need for a professional unit to compare the units with. The
large scale registrations could be done with the cheap unit, but
there was a need for a professional unit to benchmark against.

When using inexpensive GPS units its important to look at
who is manufacturing the GPS chips. More data is often found
from the chip producers then the manufacturers of the whole
unit. The GPS units may not report data at the same rate as
data is used internally. This fact opens up the possibility for
the chip or unit producers to average positional data to give
more accurate positional fixes. There can also be special
functions hidden in the units that make them more or less
suitable for different logging purposes. The documentation of
the inexpensive over the counter units that we have used did
not provide all the answers that on needs before conducting
experiments. Thus if one wants to use inexpensive GPS units
piloting is highly recommended. That is one way to counter
the lack of documentation desired for scientific experiments.

We found open source solutions for storing and analyzing the
collected GPS data. There are a few alternatives out there, but
the PostgreSQL and PostGIS combo turned out to be both
powerful and have the needed features. PostGIS and
PostgreSQL outperformed commercial software like ESRI’s
ArcView platform when it came to linking observations with
roads. It should be noted that the PostGIS and PostgreSQL has
a steeper learning curve then the ESRI products due to good
graphical interfaces. Performance wise the PostGIS and
PostgreSQL solutions out performs the standard ESRI
products. Linking GPS observations to road segments takes 10
minutes when run in the PostgreSQL and PostGIS
environment. While the same matching routine takes 5 days in
ESRIS’s ArcMap application.

The command line approach has a high learning cost and
initial cost for the first analysis. But for subsequent analysis
the same could be reused with little or no modification. This is

a clear advantage for the PostgreSQL and PostGIS
applications. But it should be mentioned that ESRI also has an
intuitive scripting environment (model builder) that could be
used for repetitive tasks.

Robustness and simplicity is where the PostgreSQL and
PostGIS suite excels. Procedures are written and executed as
normal SLQ statements. Existing functions for data
manipulation can be included in the database as SQL functions
with little modification as long as the language is supported by
PostgreSQL. Python, Perl and TCL are currently supported.
This allowed for reuse of code written for the ESRI
GeoProcessor.

A simple map matching algorithm was created and used quite
successfully for long-haul trucking operations. But this
method has its limitation when the road network gets more
complex and GPS positional fix quality deteriorates. Thus it is
believed that for urban operations an updated version of the
map matching is needed. It would be beneficial to use an
algorithm that is topologically aware and is run after the initial
matching. A table of legal adjacent road links could be
cheeked against previous and future positions. The key to this
is the window function that is available in PostgreSQL. The
algorithm cannot be used for real-time operations, but will
work for historical data. Further work on this algorithm will be
conducted in the Green Activity Zones project.

The speed data collected gives some concern of truck driving
speed in areas with speed limits of 50 and 60. If one is to trust
this data one has to be sure that the speed limit data is
correctly entered into the national road databank. Most of the
trucking operations were conducted during night time due to
freight schedules in the companies involved.

The database setup is not limited to map matching or
calculation of average speeds. Driving behavior based on the
same GPS data is possible. The calculation of RPA figures for
micro cycles was successfully conducted by adding only 58
lines of SQL code. Having data stored in the database and
using SQL with window functions removes some of the need
for purpose written computer programs. The code could be
executed on the server side and exported to post-processing
applications like statistical software through the use
standardized database drivers like ODBC.

The use of open source is not without pitfalls. How do you
know that PostgreSQL will be around in the future? The short
and probably the safest answer is that you don’t. But one key
aspect of open source project is the use of open standards. If
PostgreSQL and PostGIS stop development you will still have
the possibility to export your data to other systems due to the
use of open standards. Another issue is support, what do you
do when something goes wrong or you just need help? This is
where open source has its commercial side. There are
companies built around providing support for the products.
But user forums on the internet are also good sources of
information and solutions to common problems. From a

Trafikdage på Aalborg Universitet 2010 ISSN 1603-9696 7

lilli
Line

researchers perspective trawling the online communities and
online user commented documentation has been sufficient. For
the moment there seems to be more effort put into getting lots
powerful functionality into the programs then to make good
point and click interfaces.

VII. CONCLUSION
It is possible to use inexpensive GPS units, but there care
should be taken. The documentation of the devices is not up to
scientific standards and therefore piloting becomes essential.
The key is not to find the best unit, but the unit can deliver the
quality needed. A reference system is needed to access quality
under operating conditions. It is therefore essential to have
access to professional quality equipment which has a known
and clearly stated quality measure.

The open source arena has given rise to several applications
that has the same functionality as existing commercial
software. But the learning curve could be quite different; in
general user interface and user interaction has been more
developed in the commercial software. Open sources addiction
to the command line is on one hand challenging for the user,
but it is also excellent for repetitive tasks as you have a log of
what the user have done. This log can then be run again for
similar problems.

In our case the open source solution proved to be more
efficient then its commercial desktop opponent. Thus data
could be analyzed quicker and could be exported to other
applications through standardized ways as through the use of
ODBC.

The map matching routine developed for loose registrations
works well and data can efficiently be stored and analyzed for
rural operations where the networks are simple. For urban
operations that map matching should be developed further to
take into account road network topology, but still within the
confines of standard SQL statements. This is believed to be
achievable through the use of the window function so that
calculations can use for past and future positions.

ACKNOWLEDGMENT
Many thanks to the NPRA for funding my PHD and a to the

research counsil of Norway for supporting project like: Grønn
Godstransport, Næringslivets fartsmodell and last but not least
the Green Activety Zone project. We would also like to thank
the freight companies who allowed us to track their trucks.

References:
ERICSSON, E. 2001. Independent driving pattern factors and their influence on fuel-use and exhaust emission factors.

Transportation Research Part D: Transport and Environment, 6, 325-345.
KELLER, M., KLJUN, N., ZBINDEN, R. & WEG, M. V. D. 2007. Artemis / COST 346 - Road Model Beta-0.4d. Beta-0.4d ed.

Bern.
KESKIN, M. & SAY, S. M. 2006. Feasibility of low-cost GPS receivers for ground speed measurement. Computers and

Electronics in Agriculture, 54, 36-43.
QUDDUS, M. A., OCHIENG, W. Y. & NOLAND, R. B. 2007. Current map-matching algorithms for transport applications:

State-of-the art and future research directions. Transportation Research Part C: Emerging Technologies, 15, 312-328.
UBLOX 2006. LEA-4A ANTARIS® 4 ROM-Based GPS Module Automotive Applications.
WHITE, C. E., BERNSTEIN, D. & KORNHAUSER, A. L. 2000. Some map matching algorithms for personal navigation

assistants. Transportation Research Part C: Emerging Technologies, 8, 91-108.
WITTE, T. H. & WILSON, A. M. 2004. Accuracy of non-differential GPS for the determination of speed over ground. Journal of

Biomechanics, 37, 1891-1898.

Trafikdage på Aalborg Universitet 2010 ISSN 1603-9696 8

lilli
Line

	I. Introduction
	II. Data collection
	A. Windows mobile prototype
	B. First test of devices
	1) Using standards
	2) Test of device data quality

	III. Software for storing GPS data
	A. Duality of GIS
	B. Writing specialized functions

	IV. Mapmatching and mitigation of errors
	A. Loose data collection scheme
	B. Further analysis of driving behavior

	V. GPS artifacts
	VI. Discussion
	VII. Conclusion
	Acknowledgment

