Overall design of the Danish National Transport Model

Jeppe Rich

DTU Transport

DTU Transport Department of Transport

Outline

- Introduction
- Data
- The zone system
- Overall model system
 - Passenger transport, freight, and choice of route
- Forecast strategy
- Linkage between difference aggregation levels
- Summary and conclusion

Introduction

- The basic motivation has been to introduce a "unified" model, which will ensure that different projects are judged according to the same "metric system"
- This is completely similar to the use of standard value-of-time estimates
- It also resembles the development seen in other European countries and in the Euopean Commission

Data

- The model will apply a range of different data
 - TU data and Danish register data will be a fundamental source to the share of transport generated by Danish Citizens
 - Stop interviews in the airport, at ferries, and at the Great Belt will explain demand of foreigners as well as for Danish citizens on longer trips
 - A family based overnight survey will yield information about trips with a duration longer than 24h

The zone system

- The zone system constitute the all important georeference of the model
- Generally, there is a trade-off in that
 - More zones will improve precision
 - But also increase computation time

Level	Description	Zealand	Jutland/Funen	Total
L ₀	Municipality level	45	53	98
L ₁	Strategic level	70	106	176
L ₂	National level	530	377	907
L ₃	Regional level	2234	1436	3670

Zone system

- The idea behind the zone system has been that zones should be
 - Homogene in size, primarely with respect to the population but also with respect to the geographical size

Level	Region	Avg. addresses	Avg. size (km²)
L ₀	Zealand	19,522	204.5
L ₁		12,919	131.5
L ₂		2,355	24.4
L ₃		612	15
L ₀	Jutland and Funen	27,753	636.2
L ₁		14,260	318.1
L ₂		2,832	63.6
L ₃		667	6.4

Overall model structure

• The framework will consist of the several componts

Modelling passenger demand

The strategic model

- The strategic model will **not** consider transport
- It will only consider a set of strategic choices at the household level, which can be seen as a "pre-condition" for transport
 - Residential location
 - Work locations for up to two workers
 - Car status (number and type)
- The strategic model can be based on register data
 - This will allow us to investigate interrelations within the family at the strategic level

The demand models

- There are five parallel models
- Week-day model
 - Danish citizens
- Weekend model
 - Danish citizens

International day trip model

- Trips in and out of Denmark and below 24h
- Overnight model
 - Danish citizens

Transit model

- Trips that start outside Denmark and ends outside Denmark

Route choice model

- The route choice take as input tour matrices and assign the transport to the network
- There are a set of different route choice models
 - Road assignment (cars, freight, feeder traffic, and preloaded bus routes)
 - Public transport (combined schedule based and frequency based model)
 - Air assignment

EUROP	E	and a second
	N	

- The model involves three sub-models
- Trade model
 - Forecast trade between zones
- Logistic model
 - Choice of frequency and shipment size
 - Choice of loading unit (containerised or not)
 - Use of distribution centres, ports, and terminals
 - Choice of mode of each leg of the transport
 - Choice of crossing, e.g. new Femern Belt
- International vans and trucks, freight trains, and ships are assigned separately in the freight model

Forecast strategy

- The forecast strategy is closely related to how we "expand" the model to represent a given future population
 - For models covered by Danish register data, we will "expand" at the micro-level by up-weighting individuals (divided into sociogroups)
 - For models that represent foreigners, we will "expand" at the matrix level

Model	Data	Geography covered	Forecast method
Week-day model	TU	DK↔DK	PSE
Weekend model	TU	DK↔DK	PSE
International day model	TU	$DK \rightarrow outside DK$	Matrix Method
	Border RP/SP	Outside DK \rightarrow DK	
Overnight model	TU	DK↔DK	Matrix Method
	Border RP/SP	$DK \rightarrow outside DK$	
	Overnight RP	Outside DK \rightarrow DK	
Transit model		Outside DK \leftrightarrow Outside DK	Matrix Method

Linkage of different aggregation levels

- The will serve a varity of different objectives
 - In some cases many details will be needed
 - In other cases we will need to be able to run hundrets of screening tests to narrow down the solution space (e.g., road-pricing schemes)
- This calls for flexibility in how we run the model
- Different configurations of the model will be defined according to
 - The four zone systems
 - A break between Jutland+Funen and Zealand
 - A total of 15 configurations
- In addition, we forsee a number of special configurations
 - E.g., the Femern Belt model will indeed be one of them

Model configurations

Model configurations	East	West	Outside	Description	Run-time
M1	L1	L1	Z1,Z2	Screening model based on L1	Very fast
M2	L1	-	Z1	East screening model	Very fast
M3	-	L1	Z2	West Screening model	Very fast
M4	L2	-	Z1	East screening model based on L2	Fast
M5	I	L2	Z2	West screening model based on L2	Fast
M6	L2	L1		East screening model with L1 West	Fast
M7	L1	L2		West screening model with L2 East	Fast
M8	L2	L2	Z1-Z4	National L2 model	Medium fast
M9	L3	-	Z1	Local East model	Medium
M10	I	L3	Z2	Local West model	Medium
M11	L3	L1	Z1	Local East model with L1 West	Medium
M12	L1	L3	Z2	Local West model with L1 East	Medium
M13	L3	L2	Z1	Regional East model combined with	Medium-long
				National L2 model	
M14	L2	L3	Z1,Z2	Regional West model combined	Medium-long
				with National L2 model	
M15	L3	L3	Z1,Z2	National L3 model	Long

Policy assessment

- The policy assessment space will include
 - Infrastructure evaluations
 - Investigation of multi-modal transport systems for freight and passengers
 - Evaluation and design of road-pricing experiments
- At the level of the population
 - Enable detailed forecast of the population at the level of the zone system
 - Represent how demographical changes impact transport demand
- The model will also provide a framework for deriving
 - External environmental effects including accidents, noise, and emissions
- The model will extent abilties of previous models by
 - Allowing time-of-day substition, decompose strategic and transport related choices, and introduce activity choices
 - It will be the first Danish freight model

Summary and discussion

- The national represent the first unified transport model in Denmark
 - A major benefit because different projects are evaluated according to the same reference model
- The model will consist of a range of sub-model systems
 - Population synthesiser
 - Demand model
 - Freight model
 - Route choice model
- Differen configurations will be avilable as combinations of the zone system and East and West Denmark
- Policy assessment will be easier and cover a wider range of policies