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1.  Introduction

The number of speed bumps (”sleeping policemen”) have in many countries increased

steadily in the last decade. They are commonly used in the smaller streets near peoples homes

where it is important that the speed of the cars is kept very low (e.g. 30 km/h), primarily

because of the presence of children unaware of the traffic laws. Many drivers have the feeling

that with increasing speed the ride over the bump becomes more pleasant, this observation is

correct and is mainly due to an unsatisfactory design of the shape of the bump. The results

will show that with small changes it is possible to improve considerably the response to the

driver.

The shape of a sleeping policeman is optimized with respect to the response characteristic of a

car going over the bump. The objective is that the ride is as pleasant as possible when crossing

the bump below the maximum allowed speed, while being unpleasant when the driver is

going too fast. The shape of the bump is described by a number of amplitudes of some basic

functions, that are orthogonal in the sense that each function contributes something new to the

design space. Optimization is performed with numerical sensitivities, from a 2D multibody

system simulation, and the results show that it is possible to achieve great improvements in

the bump design. The optimization method is not specialized to a specific mechanism and

may be used to treat other multibody systems to change the response characteristics.



2.  Modelling

To optimize the shape of a sleeping policeman or speed bump we have to be able to analyse

the problem, and therefore to model the problem. The modelling falls in two parts; the

modelling of the car and the shape representation of the bump. The assumptions that the

problem can be modelled in 2D is used. The shape representation is done with the

eigenvectors from elementary cases for uniform beams (see figure 1). These functions are

orthogonal in the sense that each function will contribute something new to the design. The

functions used can be found in many books e.g. in Volterra and Zachmanoglou (1965). In this

book the case of one end fixed and the other end having fixed rotation but being free to

translate is however not found. These functions, hereafter called fixed-sliding, are given by
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where

L is the length of the domain

x length parameter  /[ ≤≤0

k is the solution to the transcendent equation  0)sinh()cos()cosh()sin( =+ N/N/N/N/

n is the solution number
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Figure 1.  Functions used to describe the speed bump.

In the modelling of the car we use the two different car models shown in figure 2, The choice

is to use the generic car as the standard or reference car, and verify with the jeep that the result

of the optimization for the standard car do not give an unsatisfactory ride for a car design far

from the one used in the optimization.



Figure 2.  Schematic drawing of the jeep (sports utility vehicle; SUV) and the generic car used.

3.  Optimization

The parameter used in this study to describe the level of comfort is the maximum acceleration

that the head of the driver will experience in a ride over a bump
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The objective of the optimization is given by
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where

[& the initial speed of the car going over the bump

( )
GHVLUHG

[D )(max & desired curve of the response

( )
UHVSRQVH

[D )(max & response curve of actual bump and car pair

To carry out the optimization the objective is discretized and we use a Taylor expansion to fit

the problem to a Linear Programming problem. Sequential Linear Programming (SLP) is used

as the overall optimization method. For more details on the optimization and the modelling

see Pedersen (1998).

4.  Results

The results from five different optimizations are given, the first two examples are non-

symmetric bumps while examples 3 through 5 are symmetric. In all of the examples the

optimization is done with the generic sedan and a bump length of 4 meter. The choice of the



length is a compromise; if the bump is longer we can get a better response curve but because

of the cost of manufacture the length should be limited.

The first example is an optimization with the design speed of 30 km/h.  The optimization is

done with eight design parameters from the 1. set (figure 1). The initial bump for the

optimization corresponds to an amplitude of 0.01 for the first function of 1. set.  The response

curve of the generic car and the utility vehicle is shown in figure 3. The shape of the bump is

shown in figure 4, and the amplitude values are given in table I.

Speed / ( )km/h

Generic car
SUV

Desired
Generic car(initial bump design)

Figure 3:  Response curves for generic car and SUV going over bump (non-symmetric, 4 meters, 30 km/h).

Figure 4:  Shape of optimized bump (non-symmetric, 4 meters, 30 km/h).



1. set 1 2 3 4
3103472.7 − 3100969.1 −− 4104042.5 −− 3108044.2 −−

5 6 7 8
3103116.2 −− 3105750.1 −− 4101714.9 −− 3103114.1 −−

Table I:  Amplitude values of optimized design (non-symmetric, 4 meters, 30 km/h).

The results show a great advantage in the response curve for the generic car; the maximum

accelerations are kept at an acceptably low level when the speed of the car is below the design

speed of the bump, while rising to an unpleasant level when the speed limit is violated. The

ride of the utility vehicle over the same bump results in a less advantageous curve; the

accelerations below the design speed are too high. This is expected because the SUV is much

stiffer than the generic car. In the design of the bump it is most important how the response is

in the range  [10:80] km/h  because it is in this range that most speeds are experienced; we

will therefore neglect the response curve outside this domain.

The second example is the same optimization as the first example, but this time the design

speed of the bump is changed to 40 km/h. The results of the optimization are shown in figures

5 and 6, together with table II.

Speed / ( )km/h

Generic car
SUV

Desired
Generic car(initial bump design)

Figure 5:  Response curves for generic car and SUV going over bump (non-symmetric, 4 meters, 40 km/h).



Figure 6:  Shape of optimized bump (non-symmetric, 4 meters, 40 km/h).

1. set 1 2 3 4
2101064.1 − 3103330.3 −− 3102963.4 − 4103945.6 −−

5 6 7 8
3107562.2 −− 3103778.1 −− 3101857.1 −− 4107744.9 −

Table II:  Amplitude values of optimized design (non_symmetric, 4 meters, 40 km/h).

The results show that we are able to achieve the desired change in the response curve, and it is

noted that the shape is able to adjust to the new desired curve. The response curve of the

utility vehicle is again less advantageous. One of the main results is that the shape of the

bump has changed considerably from the design of the first example. The only design

difference between speed bumps currently in use seems to be the height and length; there is no

significant shape difference. The results here indicate that the shape of the bumps should be

different, depending on the speed limit. In examples 3 and 4 the optimizations from examples

1 and 2 are repeated but this time for a symmetric bump. In the two examples the optimization

is carried out with eight design parameters; 4 from the 1. set and 4 from 2. The results are

shown in figures 7-10 and tables III-IV.



Speed / ( )km/h

Generic car
SUV

Desired

Generic car
(initial bump design)

Figure 7:  Response curves for generic car and SUV going over bump (4 meters, 30 km/h).

Figure 8:  Shape of optimized bump (4 meters, 30 km/h).

1 2 3 4
1. set 3103754.3 −− 3102331.2 −− 3102688.4 −− 3109190.2 −

2. set 2108707.1 − 5109015.1 −− 3103134.4 −− 4106120.7 −−

Table III:  Amplitude values of optimized design (4 meters, 30 km/h).



Speed / ( )km/h

Generic car
SUV

Desired

Generic car
(initial bump design)

Figure 9:  Response curves for generic car and SUV going over bump (4 meters, 40 km/h).

Figure 10:  Shape of optimized bump (4 meters, 40 km/h).

1 2 3 4
1. set 3108876.3 − 3101626.4 −− 3104955.2 −− 3104228.1 −

2. set 2107462.1 − 4104881.4 − 3105473.2 −− 4107010.4 −−

Table IV:  Amplitude values of optimized design (4 meters, 40 km/h).

We see the same basic result in examples 3 and 4 as in the first two examples, a great

advantage in the response curve for the generic car is achieved while the ride of the utility

vehicle over the same bump results in a less advantageous curve. The results also show that

the shape is able to adjust to the new desired curve. The main difference between the

examples is that the results in examples 3 and 4 is less advantageous compared two examples

1 and 2, this seems natural because we have restricted the optimization considerably.



In the first four examples, the shape of the optimized bump was below the street level at some

point. From a manufacturing point of view this may not be a desirable result, and the final

example is therefore the same optimization as the third example, but this time the restriction

that the shape of the bump most not have negative y-values is imposed. The results of the

optimization are shown in figures 11 and 12, together with table V.

Speed / ( )km/h

Generic car
SUV

Desired

Generic car
(initial bump design)

Figure 11:  Response curves for generic car and SUV going over bump (4 meters, 30 km/h).

Figure 12:   Shape of optimized bump (4 meters, 30 km/h).

1 2 3 4
1. set 3103617.4 − 4103064.6 −− 3101525.4 −− 3105724.3 −

2. set 2103588.2 − 4105325.8 −− 3106834.1 −− 3101657.1 −−

Table V:  Amplitude values of optimized design (4 meters, 30 km/h).



5.  Conclusion

It is shown how the response characteristics of a car going over a speed bump can be

optimized. The maximum acceleration to the head of the driver when crossing the bump at a

speed below the speed limit of the bump (the design speed of the bump) is minimized, while

the driver will experience an unpleasant acceleration when exceeding the speed limit.

Optimized results are shown for a 4 meter long bump with design speeds of 30 km/h and 40

km/h, using an average car (generic sedan). The resulting response curves of the optimized

bump design are shown for the generic sedan and a sports utility vehicle; the SUV design is

considered to be too far from the average car and is used to show that the response curve for

this car model does not result in unsatisfactory results. The objective used to quantify the

comfort of the driver is the peak acceleration to the driver’s head as the bump is passed. The

modelling is done in 2D, so we may use 2D multibody simulation, with the  reduction in

CPU-time that follows from this. The shape of the bump was described by amplitudes of

global functions. The functions used to describe the shape are used because they are able to

describe a large variety of shapes with only a few parametres.
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